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Abstract

When face images are taken in the wild, the large varia-
tions in facial pose, illumination, and expression make face
recognition challenging. The most fundamental problem
for face recognition is to measure the similarity between
faces. The traditional measurements such as various
mathematical norms, Hausdorff distance, and approximate
geodesic distance cannot accurately capture the structural
information between faces in such complex circumstances.
To address this issue, we develop a novel face patch
network, based on which we define a new similarity measure
called the random path (RP) measure. The RP measure is
derived from the collective similarity of paths by performing
random walks in the network. It can globally characterize
the contextual and curved structures of the face space. To
apply the RP measure, we construct two kinds of networks:
the in-face network and the out-face network. The in-face
network is drawn from any two face images and captures
the local structural information. The out-face network
is constructed from all the training face patches, thereby
modeling the global structures of face space. The two
face networks are structurally complementary and can be
combined together to improve the recognition performance.
Experiments on the Multi-PIE and LFW benchmarks show
that the RP measure outperforms most of the state-of-art
algorithms for face recognition.

1. Introduction

Over the past two decades, face recognition has been
studied extensively [10, 14, 19, 33, 4, 6, 34, 3, 30, 16].
However, large intra-personal variations, such as pose [24,
35], illumination [24, 8], and expression [2, 24], remain
challenging for robust face recognition in real-life photos.
In Figure 1, for example, A and A’ are two images of the
same person with different poses and illuminations. A and
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Figure 1. Illustration of the superiority of our random path (RP)
measure over other measures (for example, Euclidean (E) measure
and the shortest path (SP) measure). Due to the large intra-
personal variations (e.g., pose, illumination, and expression), there
may be underlying structures in face space (denoted by the red and
blue clusters). For three face images A, B, and A’ of two different
persons, the distances are d ;, > d%p and d55, > d3% if
measured by Euclidean measure (solid green line) and the shortest
path measure (solid yellow line). In other words, A is more similar
to B than to A’. Incorrect decisions are usually made because
the intra-personal variation is much larger than the inter-personal
variation. If we consider their underlying structures and compute
their similarity by our random path measure (dashed yellow line),
we get d¥, < dBL. The correct decision can be made. Note that
this figure is only for the purpose of schematic illustration. In the
real experiment, we use facial patches instead of the whole face.

B are from two different persons with the same pose and
illumination. The appearances of A and B are more similar
to each other than A is to A’, which may confuse most
existing face recognition algorithms.

Classical measurement approaches for face recognition
have several limitations, which have restricted their wider
applications in the scenarios of large intra-personal vari-
ations. Seminal studies in [27, 23, 20, 22] have revealed
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Figure 3. The proposed out-face network pipeline.

that the diverse distributions of face images for one person
may form the underlying manifold structures. In fact,
these distributions generally have different densities, sizes,
and shapes, due to the high complexity in face data. In
addition, noise and outliers are often contained in face
space. The current measurement approaches fail to tackle
all of these challenges. Many methods based on (dis-
)similarity measures [1, 25, 32, 10] directly use pairwise
distances to compute the (dis-)similarities between faces,
which cannot capture the structural information for the
high-quality discrimination, as shown in Figure 1. Although
some studies [29, 27, 21] apply the structural information
in measurements, the developed algorithms are, generally
speaking, sensitive to noise and outliers. For instance,

computing the length of the shortest path in a network is
very sensitive to noisy nodes.

This paper reports on a new face similarity measure
called random path (RP) measure, which was designed to
overcome the above-mentioned problems. We first con-
struct two novel face patch networks: the in-face network
and the out-face network, as shown in Figures 2 and 3.
In our study, faces are divided into multiple overlapping
patches of the same size. The in-face network is defined
for any pair of faces. For each pair of faces, at each patch
location, we use the two corresponding patch pairs and their
eight neighboring patches to form a KNN graph, which we
call the in-face network. For each such in-face network, we
propose a random path (RP) measure as the patch similarity



of the corresponding patch pair. Given a network, all paths
between arbitrary two nodes are integrated by a generating
function. The RP measure includes all paths of different
lengths in the network, which enables it to capture more
discriminative information in faces and significantly reduce
the effect of noise and outliers. For a pair of faces with
M patches, therefore, we can compute M RP measures to
form the similarity feature vector between the two faces.
Since the network is only constructed within two faces in
this approach, we call it the in-face network.

The out-face network is built in a similar fashion. Instead
of using local neighboring patches to form the network,
for each patch we search a database of face patches and
find similar patches in the same location neighbors of the
patch to form the patch pair network. Since the search
is conducted globally over the training space, the out-
face network captures more global structural information.
Because the two networks describe the local and global
structural information respectively, the similarities derived
from the RP measure on these two networks can be
combined to boost the recognition performance. By means
of the RP measure on the in-face and outface networks,
our RP measure performs significantly better than existing
measures for face verification on two challenging face
datasets, LFW [11] and Multi-PIE [9]. In addition, our
method outperforms most of the current appearance-based
methods [15, 4, 18, 7].

2. Related Work

From the point of view of data structures, there are two
types of measures for face recognition: non-structure-based
measures [1, 25, 32, 10, 4] and structure-based measures
[29, 27, 21]. Here, the structure means that data points
may lie in some underlying manifolds and the distance
between data points cannot be accurately measured by a
straight line or its analogous variants. Since the face space
is often structured - that is, nonlinear [27, 23, 20, 22] -
the distance between faces cannot be precisely measured
by non-structured measures such as Euclidian distance,
Manhattan distance, Pearson’s coefficient of correlation,
Hausdorff distance, and Chi-square distance, or by linear
subspaces derived from linear projection methods such
as Principal Component Analysis (PCA) [28] and Linear
Discriminant Analysis (LDA) [2, 31, 30].

Studies on similarity measure in face recognition mainly
focus on the non-structured metrics. In [1], for example, a
Manhattan-like measure was proposed, which is a weighted
sum of Chi-square distances. In [4], the component similar-
ity is measured by Lo distance between the corresponding
descriptors of the face pair. A partial Hausdorff distance
measure was defined in [25], where a pixel in one face
could be matched with any other pixel with the same local
binary pattern in the other face. Similarly, in [10], a robust

elastic and partial matching metric was presented, where
each descriptor in one face is matched with its spatial
neighboring descriptors in another face and the minimal
distance is regarded as their dis-similarity. Although some
measures, such as the one in [10], have taken spatial neigh-
borhood information into consideration, they all directly use
pairwise distances to measure similarities without structural
information.

For the structural information based measures, one of the
representative works is the Isomap algorithm in manifold
learning [27]. Isomap models the structural proximity
between two data points by the geodesic distance that can
be approximated by the shortest path length. Based on
geodesic distances, spectral low-dimensional embeddings
of data correctly unfold the underlying manifold. The idea
was applied in [29] for face recognition by proposing the
Manifold-Manifold Distance (MMD). Instead of measuring
two data points, the MMD measures the similarity of
two manifolds by finding the shortest distance between
component subspaces from the two manifolds. Although
these approaches can capture the manifold structures, their
performance often degrades significantly with the existence
of noise or outliers, because the shortest path is sensitive to
noisy perturbations.

3. Modeling Faces with Patch Networks

A face is holistically structured. Even for a patch p
cropped from the face, its micro-structure is continuously
connected with that of patches around patch p. For instance,
the structure of the patch of the eye corner is bridged
with that of its neighboring patches, as Figures 2 (a)
and (b) show. Therefore, it is more convincing to take
the neighboring patches into consideration when locally
comparing the similarity between two faces from patch pair.
To do this, we sample the r neighboring patches around
patch p. Figure 2 (b) shows the patch examples in the case
of r = 8 for face a and face b. The visual semantics of
local patches cropped at the same point for different faces
may be highly correlated. For example, the eye corners for
different faces are very similar. Therefore, the 2 x (r + 1)
neighbor patches may be spatially mixed if we present them
as spatial vector points. To model such mixing structures,
we resort to complex network. The mixing patches are
locally connected according to their spatial positions in
feature space by a KNN network. Figure 2 (c) shows a
2-NN network of facial patches. The network constructed
between two faces is called the in-face network.

Figure 2 (c) shows that some patches of the same person
are not directly linked. To model the structure in such
case, we apply paths to connect the distant nodes in the
network. Path-based measurements are widely employed
in social networks to compute the nodal similarities. For
instance, each entry of (I — 2P)~! presents the global



similarity for the corresponding nodes [13], where P is the
adjacency matrix of the network. The nodal similarity is
defined by all the connected paths between nodes. With the
similarity matrix (I — zP)~!, we can measure the structural
compactness of the network by the average similarity
between all nodes. To this end, we define the path centrality
Ca = %IT(I — zP)~'1. The more compact the network
is, the larger the path centrality is. With path centrality C,
it will be easy to measure the similarity of patch pair in the
network framework. To make the analysis clearer, we let
Gy U GZ denote the network constructed from patch p in
face a and patch g in face b, as shown in Figure 2 (a), where
G}, is the sub-network of patch p and Gg is the sub-network
of patch ¢. It is straightforward to know that the more
similar the patch p and the patch ¢ are, the more mutually
connected paths there are between Gg and Gg. Therefore,
the increment of the path centrality CGchg will be large
over ng and CGZ of the sub-networks, which motivates us
to define the random path measure CGZUGZ - CGZ - CGS
for measuring the similarity of patch pair. We will present
the formulation in Section 3.1.

For many faces, there also exists the correlation between
the same components of different faces. For example,
Peter’s eyes look like Tom’s. To model such structural
correlation, we further construct a network from the patches
at the same positions of all faces. Thus we can build
the M networks if there are M different patches in one
face, as Figures 3 (a) and (b) illustrate. To integrate these
component networks, for each patch in a face, we link it
with its 7 most similar patches in the neighbor position in
the training data, as Figures 3 (c) shows. Thus we derive a
global network that cover the structural correlation between
faces and within faces. We call it the out-face network.

The random path measure will be adopted both in the
in-face and out-face networks. So we first present the
formulation of the random path measure and then the
construction of the in-face and out-face networks follows.

3.1. The Random Path Measure

Let G denote a network with N nodes {z1,...,2n},
and P denote its weighted adjacency matrix. Each entry in
the matrix P is the similarity between associated nodes. For
generality, G is assumed to be directed, which means that
P may be asymmetric. A path of length ¢ defined on P is
denoted by p; = {vg = v1 — <+ = vi_1 —> v }. Spis
the set of all paths of length ¢. Let 7" denote the transpose
operator of a matrix, 1 the all-one vector, and I the identity
matrix.

Inspired by concepts in social network analysis [17],
we introduce the definition of path centrality Ci for the
network G.

Definition 1 Path Centrality Cc = 17 (I — 2P)7'1,
where z < 1/p(P) and p(P) is the spectral radius of P.

The (i, j) entry of the matrix (I—2P) ! represents a kind of
global similarity between node x; and node x;. It was first
introduced by Katz [13] to measure the degree of influence
of an actor in a social network. To make it clear, we expand
(I — zP)~! and view it as a generating matrix function

o0
(I—2P) ' =T+ 2P+ 2°P2 4. =) 2P (1)
t=0

Each entry in the matrix P’ can be written as

t—1
Pz,j = Z H ka,vk+1v (2)

pt €Sy k=0
vy = 14,0t = J

which is the sum of the products of the weights over all
paths of length t that start at node z; and end at node z;
in G. In machine learning, the global similarity defined by
Eq. (2) is also called the semantic similarity [12]. In our
framework, the weighted adjacency matrix P satisfies that
each entry is non-negative and each row sum is normalized
to 1. Therefore, we can view the entry Pi ; as the probability
that a random walker starts from node x; and arrives at node
x; after ¢ steps. From this point of view, the path centrality
is to measure the structural compactness of the network GG
by all paths of all lengths between all the connected nodes
in GG. Due to the randomness of walks in G, we refer to our
measurement as the random path measure.

With the definition of path centrality, the RP measure
can be naturally used to compute the similarity between two
networks. From the definition of path centrality, it makes
sense that the two sub-networks in GG have the most similar
structures in the sense of path centrality if they share the
most paths. In other words, from the viewpoint of structural
recognition, the two networks are most relevant. Therefore,
for two given networks G; and G, the definition of our RP
measure can be defined as follows.

Definition 2 Random Path Measure ¢, ¢, = Cg,uc, —
(Ca, + Cg,), is regarded as the similarity between two
networks G and G ;.

In the definition above, the union path centrality C’Gq,qu is
written as

1
Ce,ua, = 1"(I1-2Pg,ue,) 'L (3)

|G UGl
where P, g, is the union adjacency matrix corresponding
to the nodes in G; and G;. The RP measure ®¢,uq;
embodies the structural information about all paths between
G; and G;. In order to understand the definition intuitively,
we consider a case shown in Figure 4. Cg, and Cg, mea-
sure the structural information in G; and G, respectively.



Figure 4. Illustration of the random path measure. Paths in G;
and G are denoted by red and yellow arrows, respectively. Paths
between G; and GG are denoted by blue arrows.

CGiqu measures not only the structural information within
G; and G, but also that through all paths between G; and
G;. The larger the value of P, uG,, the more structural
information the two networks share, meaning that these two
networks have more similar structures. Therefore, ®¢,ug;
can be exploited to measure the structural similarity be-
tween two networks.

The RP measure takes all paths between two networks
into consideration to measure their similarity, not only the
shortest path such as [29, 27]. Therefore, our measure is
robust to noise and outliers. Besides, we take the average
value of nodal centrality (I — zP)~'1. With this operation,
the structural information of network is distributed to each
node, which means that the RP measure is also insensitive
to multiple distributions and multiple scales.

3.2. In-face Network

Figure 2 presents the in-face network pipeline. We
densely partition the face image into M = K x K
overlapping patches of size n X n (n = 16 in our settings).
We set 8-pixel overlap in this paper. We apply a local image
descriptor to extract features for each patch of size n x n.
Therefore, each face is represented by aset of M = K x K
feature vectors formed from a local image descriptors

S Eu ) “4)

where f;; is the feature vector of the patch located at (4, j)
in the face. F2 and F” denote the feature sets of face a
and face b, respectively. To build an in-face network for the
patches at (i, j), we take ff; in 7 and ifj in F°. At the same
time, the r neighbors of f;; around (3, j) are also taken. The

]::{fu,...,fij,..

same operation is also performed for ff . Wesetr = 8
in this paper. Thus, we get the (2 + 2r) feature vectors of
patches that are utilized to construct a KNN network G';; for
the patch pair of f;‘j and tfj Its weighted adjacency matrix

is denoted by Pg,,. Therefore, the adjacency matrix PG%
of the network G; corresponding to f?j and its r neighbors
is the sub-matrix of G;; identified by the indices of f{; and
its r neighbors. Similarly, we can get ij and its adjacency
matrix PG?]_. For better understanding, we define G;; =
Gi; U ij, which means the set of nodes of G;; are the
union of that of G7; and Gﬁ-’j. For the patch pair of f7; and

2

;- we calculate their path centralities as follows:

1
Cga = - lT(I — ZPG{I_)_117
oGy Y
1
CG’?. = b lT(I - ZPGE.’.)_llv (5)
Y |Gij Y
1

_ _ T —1
CngUG,l;j == CGij = 7|G”|1 (I ZPG”) 1.

Applying the RP measure gives the similarity measure of
the patch pair

S = Pge ugr, = Casugy, = (Cay, +Cgr ). (6)

Analogous to this manipulation, the similarities of M patch
pairs from F¢ and F° can be derived. Padding them as a
similarity vector

m mn mn
s = oo Sifs

L8 @)

completes the process of applying the RP measure on the
in-face network for two face images.

We refer to the network presented above as the in-face
network because the network is only constructed within two
face images. Only the structural information of patch pair
and their neighborhoods is considered; therefore, the in-face
network mainly conveys the local information.

3.3. Out-face Network

The proposed out-face network pipeline is shown in
Figure 3. Unlike the in-face network, the construction
of the out-face network requires the training data in an
unsupervised way. The patch division and feature extraction
is performed in the same way as in Section 3.2. Suppose
that 7" is the number of face images in the training set. Write
the feature set as

U ={F',. . F}, ®)

where F* is the feature set of the ¢-th face. We first adopt
all the feature vectors {f%j, e ,fz; at (4, 7) in the training
set to construct a KNN network G?}Obal. In this way, we
can construct M independent Gf;Ob“l, meaning that there
is no connection between them. Further, to preserve the

structural proximity between ff-j and its neighbors at (, j)
in each face, we connect ffj with all of its 8 neighbors.



Here by “connect” we mean when a patch is selected, all
its 7 neighbors will also be selected. Therefore, by the
connections of neighborhoods, the M independent G?;Obal

are linked together to form the final global network G9°b@!
with the weighted adjacency matrix P9/°%%,

Given a test face image a, we search its NN most
similar patches in ijl-Ob“l for each fi;, and then for
each selected patch, we also select its 8 neighbor patches
together to form the initial G*. This search method can
guarantee that the acquired similar patches are among the
spatially semantic neighbors of f7. in other face images.
Thus, (r™¥ + 1) x M patch nodes are finally selected
from G9'°%e! We delete some duplicates from them and
use the remaining nodes to extract the sub-network G*
from G9°%a! with its corresponding sub-matrix Pga from
P9lobal Gt and Pgy can be acquired in the same way for
face b. By merging nodes in G* and G®, we can draw the
union network G® U G? and its adjacency matrix Pga e
from Gglobal and Pglobal.

After acquiring Pga, Pge, and Pgage for face a and
face b, it is straightforward to compute their path centrali-
ties: Cga, Cgv, and C'gagv according to Definition 1. We
then utilize the RP measure to calculate their similarity

S(mt = q)GaUGb~ (9)

N

s°4t describes the structural information of two face images
from the global view.

Since the construction of this network requires the
training data and the each test face needs to be projected
on it, we call the network the out-face network. Searching
for the nearest neighbors for each patch is fast because the
search operation is only made in Gf;Obal instead of G9'obal,

3.4. The Fusion Method

From the analysis above, it is clear that the in-face
network and the out-face network are structurally comple-
mentary. To improve the discriminative capability of the
networks, we present a simple fusion method to combine
them

Sfinal _ [O[Sin, (1 _ Q)SOUt], (10)
where s/7" is the combined similarity vector of two face
images, and « is a free parameter learned from the training
data. This fusion method can effectively combine the
advantages of the in-face network and the out-face network.
We feed s/ to the linear SVM [5] to train a classifier for
recognition.

3.5. Weighted Adjacency Matrix

The weight P(4, j) of the edge connecting node x; and
node x; in the network is defined as

_dist(wi,xj)Q . ) K
P(i,j):{exP( o2 ) ifz; €N

0, otherwise

where dist(z;,z;) is the pairwise distance between
z; and x;, NF is the set of KNNs of z;, and
o2 = #[Z?:lzwjeNiK dist(z;,zj)?]. To get the
transition probability matrix, we perform P(i,j) <+

P(i, )/ 32— P(i, J).
4. Experiments

In this section, we conduct experiments on face ver-
ification to validate the effectiveness of our RP measure
based on the in-face and out-face networks. The face data
we use are two widely used face databases: the Multi-
PIE dataset [9] and the LFW dataset [11]. The Multi-PIE
dataset contains face images from 337 subjects under 15
view points and 19 illumination conditions in four recording
sessions. Unlike the Multi-PIE dataset, the LFW dataset
contains 13,233 uncontrolled face images of 5,749 public
figures of different ethnicity, gender, age, efc.

In our settings, according to subject identities, the Multi-
PIE dataset is divided into three parts: S7 (ID 1-100), S,
(ID 101-300), and S35 (ID 301-346). We collect a new
dataset Si.qin by randomly selecting 3000 face images
from S;. The Sirqin is applied to construct the global
network G9'°%%! employed in Section 4.1 and 4.2. From S5,
we randomly select 10 mutually disjoint folders with 500
intra-personal and 500 extra-personal pairs in each folder.
This dataset will be used for testing in Section 4.2. The
remaining S is applied in Section 4.1. We also randomly
select 10 mutual disjoint folders with 100 intra-personal
and 100 extra-personal pairs from S5 to tune the optimal
parameters. For the LFW dataset, we follow the restricted
protocol of the LFW benchmark for evaluation [11]. To
perform the fair comparison with the recent algorithms in
face recognition, we follow the procedures in [4] to crop
faces and each cropped face is resized to 84 x 96 pixels
with the eyes and mouth corners aligned.

To verify the performance of the proposed RP mea-
sure, we compare our algorithms mainly to the widely
used measures, including Euclidean distance, Chi-square
distance, Hausdorff distance, Hua et al.’s method [10], and
the shortest path [26, 29], on four popular descriptors in face
recognition: LBP [18], HOG [7], Gabor [32], and LE [4].

4.1. Tuning Parameters

Since our approaches involve some free parameters,
we first determine the optimal parameters used in our
approaches on the randomly selected face image collection
from S5. Our approaches involve four important parameters
!, The first two parameters are the number K" of nearest

IThere are also three relatively unimportant parameters: the size of
the patch (n), the patch sampling step (s), and the number of the patch’s
neighbors (). Intuitively, the size and the step should not be too large or
too small; so it is good that n = 16 and s = 8. Usually, the patch is only
relative to its eight surrounding neighbors, so 7 is set to 8.
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Figure 5. Setting parameters. There are four important parameters in our approaches. We tune one of four parameters while keeping the

other parameter unchanged.

[ Dataset “ Recog. rate on Multi-PIE [ Recog. rate on LFW ]

Descriptor LBP HOG Gabor LE LBP HOG Gabor LE

1 70.8£08 | 72.8+£0.7 | 72.1+0.7 | 80.1+0.7 | 66.9£0.6 | 66.3£0.5 | 61.4+0.3 | 73.4+0.4

Euclidean 66.9+04 | 76.9+£0.8 | 72.7£0.6 | 75.8+0.6 | 622+0.9 | 68.2+£0.6 | 49.5£0.5 | 65.2+0.8

Chi-Square 70.1+£06 | 75.9+09 | 499+£0.1 | 73.6£0.6 | 67.2+0.7 | 684+0.7 | 50.1£0.1 | 73.4£0.4

Hausdorft 61.9+0.7 | 76.1£0.9 | 68.9£0.7 | 57.14+0.8 | 50.84+0.5 | 64.9+0.7 | 61.8£0.4 | 51.7+0.3

Hua et al [10] 61.4+03 | 699+£04 | 70.9+£0.3 | 73.84+0.7 | 64.3+08 | 65.7£0.7 | 64.1£0.9 | 67.4+0.9

Shortest Path [26, 29] 51.24+0.1 | 50.3£0.3 | 52.1+£0.3 | 50.4+0.5 | 50.1 +0.1 | 50.7+04 | 52.3£0.5 | 50.4+0.1

Our in-face 81.3+04 | 851+0.6 | 83.6+03 | 88.1+07 | 771 +0.1 | 742+03 | 71.5+04 | 84.4+0.2

Our out-face 71.8+0.6 | 77.8+£0.7 | 741+06 | 813+02 | 67404 | 695£02 | 65601 | 79.5+0.1

Our fusion 853+0.1 | 886+05 | 874+0.1 | 923+03 | 80103 | 76.3+0.1 | 744+0.6 | 86.7+ 0.4

Table 1. Results on Multi-PIE and LFW. In the experiment, the out-face networks for Multi-PIE and LFW are the same and constructed

from the Multi-PIE faces.

neighbors in the construction of the in-face network and
K°u! in the construction of the out-face network. K"
and K°“' play a very important role in our approaches
because they directly determine the structures of the in-face
network and the out-face networks. The third parameter is
NN which is the number of nearest neighbors for each
patch of a test face in G9°*_ Tt controls the inter-personal
complexity of the out-face network. The fourth parameter
is the weighting parameter « in the fusion method. To
balance the importance of similarities yielded by the in-face
network and the out-face network, this parameter should be
chosen carefully.

In this section, we conduct four experiments to explore
the effects of the four parameters. In all of the experiments,
we extract LBP features for facial patches. When tuning
one of the four parameters, we keep the other three ones
unchanged. For example, in Figure 5 (a), we fix that
Keut = 50, VN = 50, and a = 0.5. Then, the optimal
value of K™ is acquired, as K™ = 4, when the algorithm
achieves the best performance. The adjustment of K%,
VN and « are shown in Figures 5 (b), (c), and (d). In
Figure 5 (b), the verification performance coincides when
NN = 30 and NV = 40. For fast computation, NV =
30 is chosen. Similarly, we get K°“* = 40 from Figure 5
(c). Therefore, we determine that K" = 4, K°% = 40,

rNN =30, and o = 0.5 in our parameter settings.

4.2. Results on Multi-PIE and LFW

Table 1 provides the results of our RP measure and
other measures for comparison on two face database bench-
marks. The results clearly show that our RP measure can
dramatically improve the recognition performance of the
four descriptors. In addition, the results in the last three
rows in Table 1 effectively verify that the in-face network
and the out-face network are complementary, because the
recognition performance of the combined network can be
improved over that of the in-face and out-face networks.
Our RP measure is a general similarity measurement and
can be applied to improve any appearance-based approach.

To further demonstrate the robust performance of our
method, we present the verification results on the LFW
dataset with the outside training data. 10,000 face images
from the Multi-PIE and Pugfig83 [14] databases are adopted
to construct the out-face network. The feature vector for
each patch is the combined features of LBP, HOG, Gabor,
and LE. As shown in Figure 6, our method performs best
when all of the methods are directly performed on the
original faces. The best performance for LFW is 93.3%
reported in [3]. Their method applies the accurate face
alignment and warp with the human-labeled locations of 95
face parts for 20,639 face images. If all images in LFW
are aligned with global affine transformations based on the
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Figure 6. Verification performance on LFW with the outside
training data.

detected locations of the eyes and mouth instead of their
accurate alignment and warp, the accuracy in [3] is 90.47%.
Since the in-face and out-face networks are constructed
from patches of the aligned face images, the more accurate
face alignment will lead to the more accurate face-patch
networks. So it can also be predicted that the performance
of our RP measure will be improved if performed on such
accurately aligned faces.

5. Conclusion

This paper has proposed a random path (RP) measure for
face recognition based on the path similarity defined from
random walk in the network. To adopt the RP measure for
face recognition, we construct two types of networks on
face data: the in-face network and the out-face network.
The in-face and out-face networks describe the local and
global structural information of faces, respectively. We
combine them to improve the recognition performance.
Extensive experiments on the Multi-PIE and LFW face
databases validate that the proposed RP measure has the
superiority of discriminating complex faces with the large
intra-personal variations including pose, illumination, and
expression. This study has only examined the random path
measure for face recognition. Our future work will explore
the applications of the RP measure for other recognition
tasks, such as image retrieval and object recognition.
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