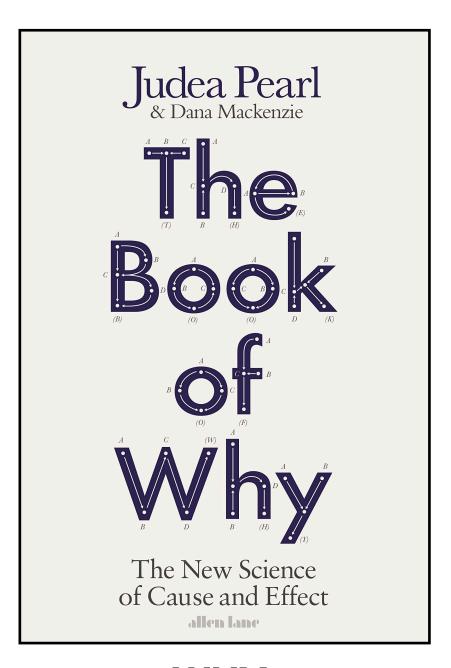
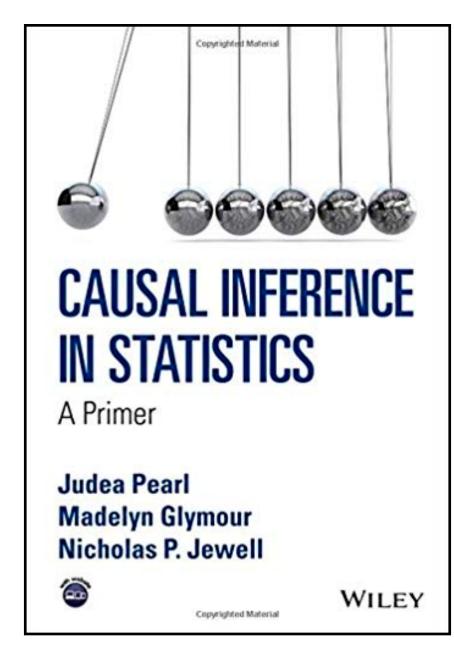
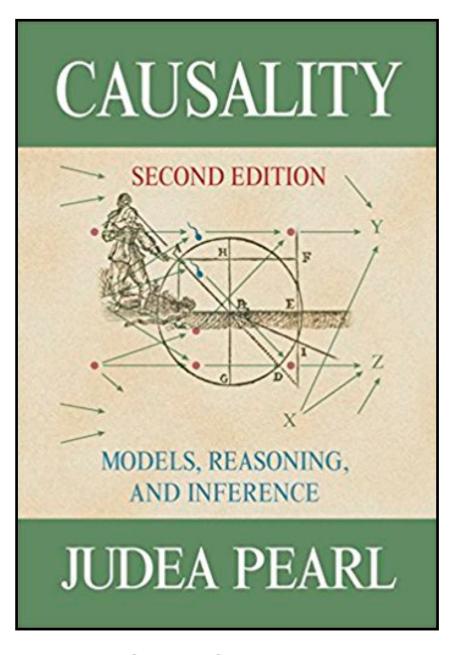
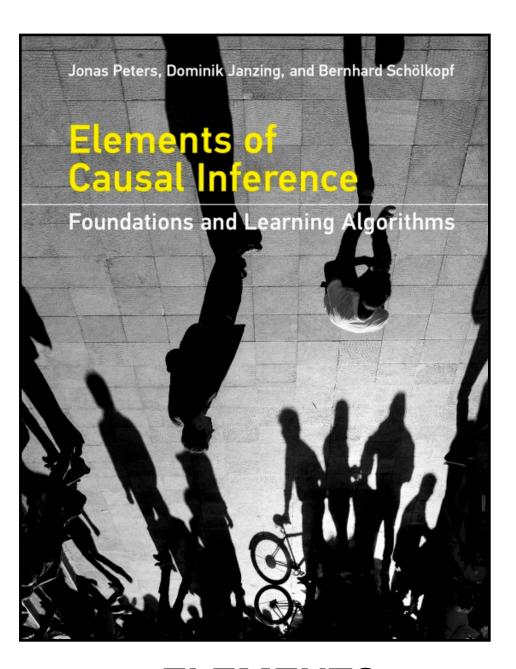


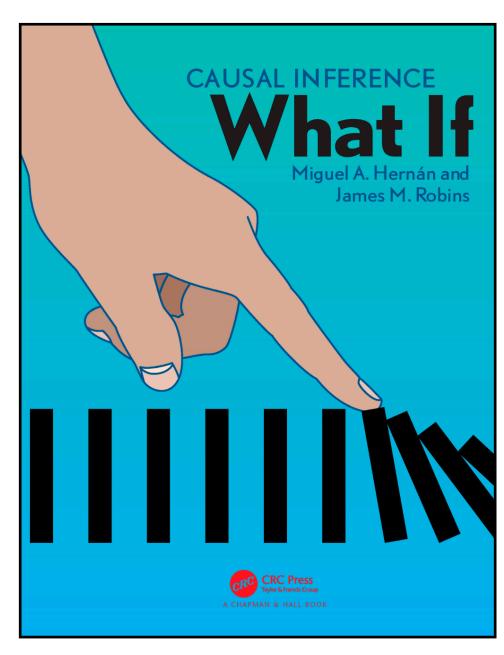
Disclaimer











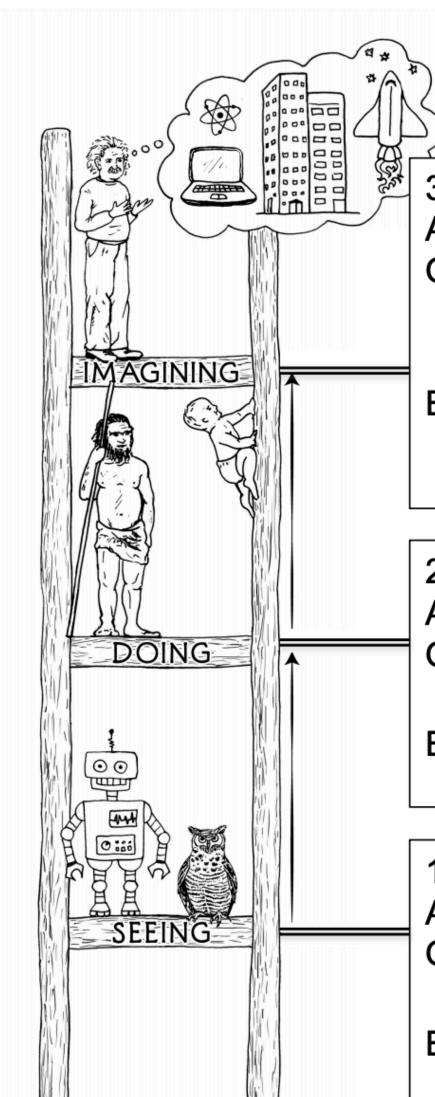
WHY PRIMER

CAUSALITY

ELEMENTS

WHATIF

The Ladder of Causation



3-LEVEL HIERARCHY

3. COUNTERFACTUALS

ACTIVITY: Imagining, Retrospection, Understanding

QUESTIONS: What if I had done . . . ? Why?

(Was it X that caused Y? What if X had not

occurred? What if I had acted differently?)

EXAMPLES: Was it the aspirin that stopped my headache?

Would Kennedy be alive if Oswald had not

killed him? What if I had not smoked the last 2 years?

2. INTERVENTION

ACTIVITY: Doing, Intervening

QUESTIONS: What if I do . . . ? How?

(What would Y be if I do X?)

EXAMPLES: If I take aspirin, will my headache be cured?

What if we ban cigarettes?

1. ASSOCIATION

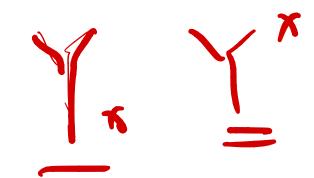
ACTIVITY: Seeing, Observing QUESTIONS: What if I see . . . ?

(How would seeing X change my belief in Y?)

EXAMPLES: What does a symptom tell me about a disease?

What does a survey tell us about the election results?

 $P(Y_{X'}|X)$



$$P(Y|do(x)), P(Y_x), P(Y(x))$$

Structural Causal Models

Structural Causal Model

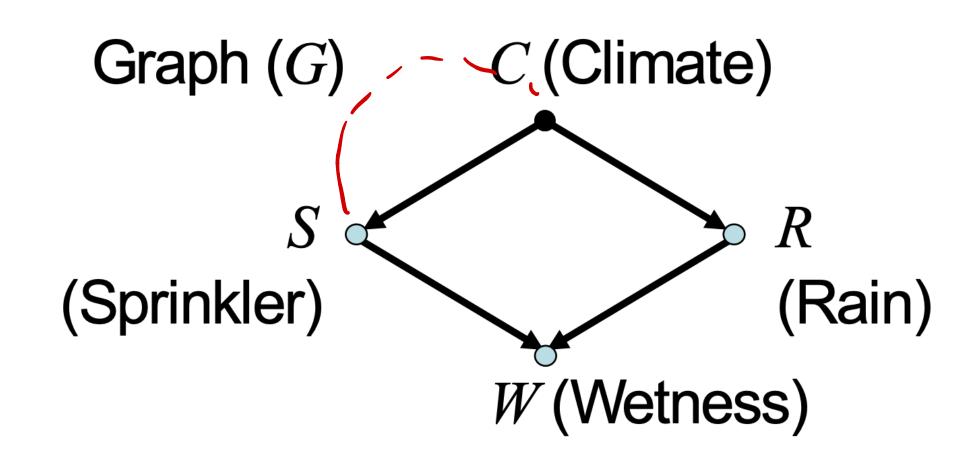
Definition: A structural causal model is a 4-tuple $\langle V,U,F,P(u)\rangle$, where

- $(V \neq \{V_1,...,V_n\}$ are endogenous variables
- $U = \{U_1, ..., U_m\}$ are background variables
- $F = \{f_1, ..., f_n\}$ are functions determining V, $v_i = f_i(v, u)$ e.g., $y = \alpha + \beta x + u_Y$
- P(u) is a distribution over U
- P(u) and F induce a distribution P(v) over observable variables

$$V_{i} := f(V_{m}, N)$$

$$U_1 \perp \!\!\! \perp U_2 \perp \!\!\! \perp \cdots \perp \!\!\! \perp U_m$$

Graphical Representation



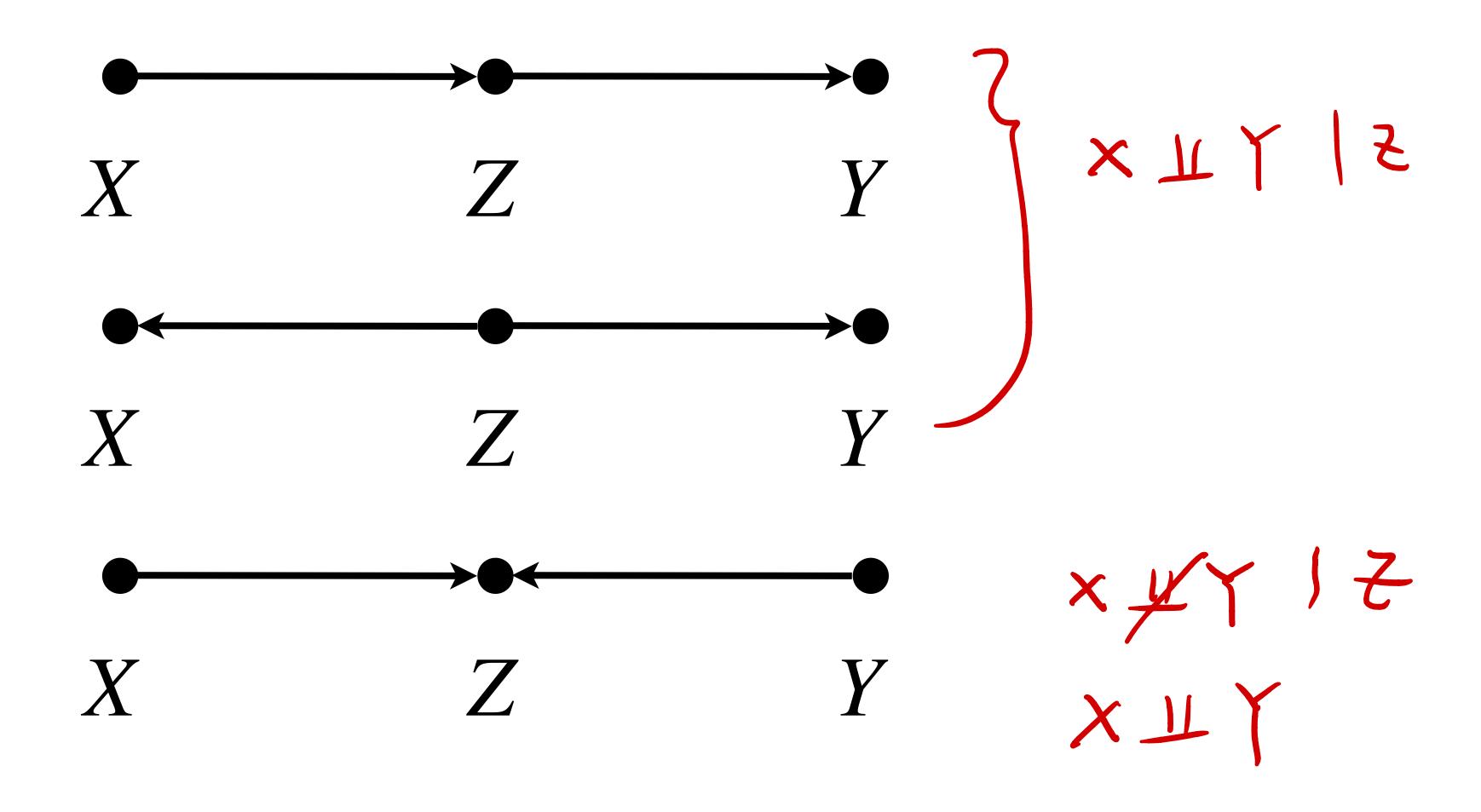
Model (M)
$$C = f_C(U_C)$$

$$S = f_S(C(U_S))$$

$$R = f_R(C(U_R))$$

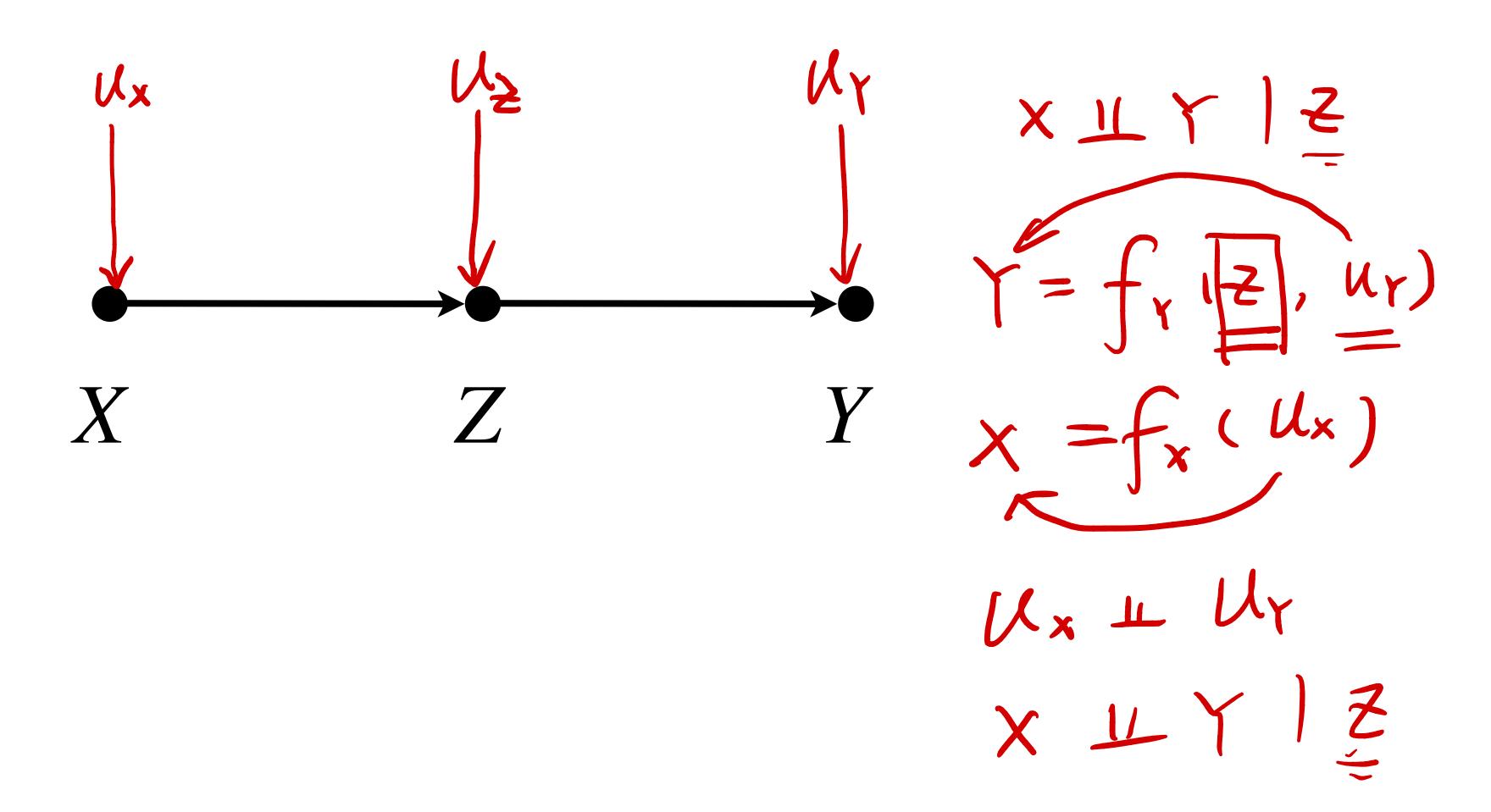
$$W = f_W(S, R, U_W)$$

Three Building Blocks

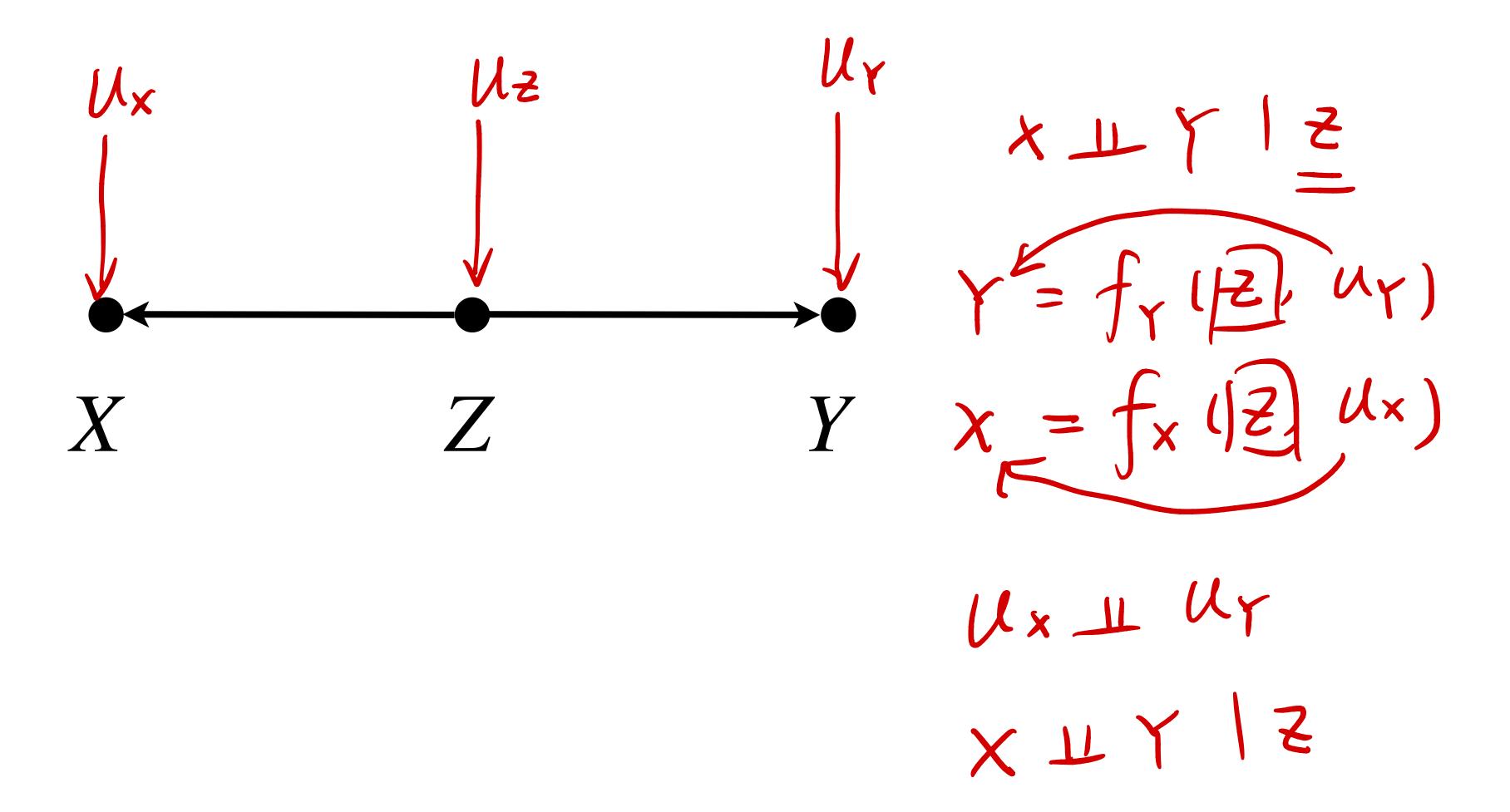


(PRIMER, CH2)

Chain



Fork



Collider

$$\begin{array}{c} \times \times \times Y \mid Z \\ \\ |Z| = f_{Z}(X, Y, U_{Z}) \\ \times \times Y \mid Z \\ \times \times Y \mid Z$$

$$\times \times Y \mid Z \mid Z \mid Z$$

(PRIMER, CH2)

d-Separation

Definition 2.4.1 (*d*-separation) A path p is blocked by a set of nodes Z if and only if

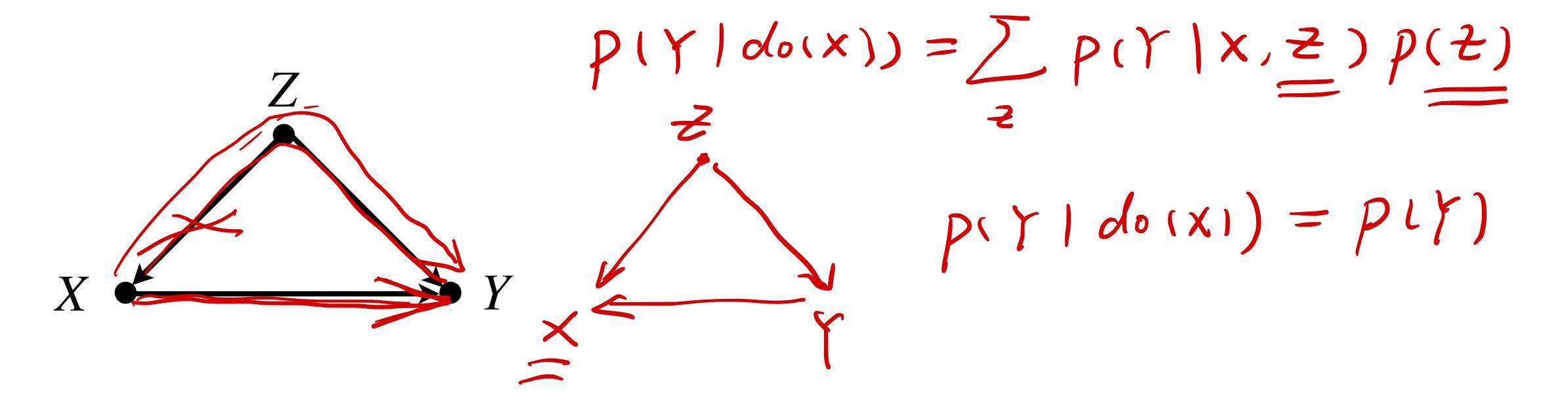
- 1. p contains a chain of nodes $A \rightarrow B \rightarrow C$ or a fork $A \leftarrow B \rightarrow C$ such that the middle node B is in Z (i.e., B is conditioned on), or
- 2. p contains a collider $A \to B \leftarrow C$ such that the collision node B is not in Z, and no descendant of B is in Z.

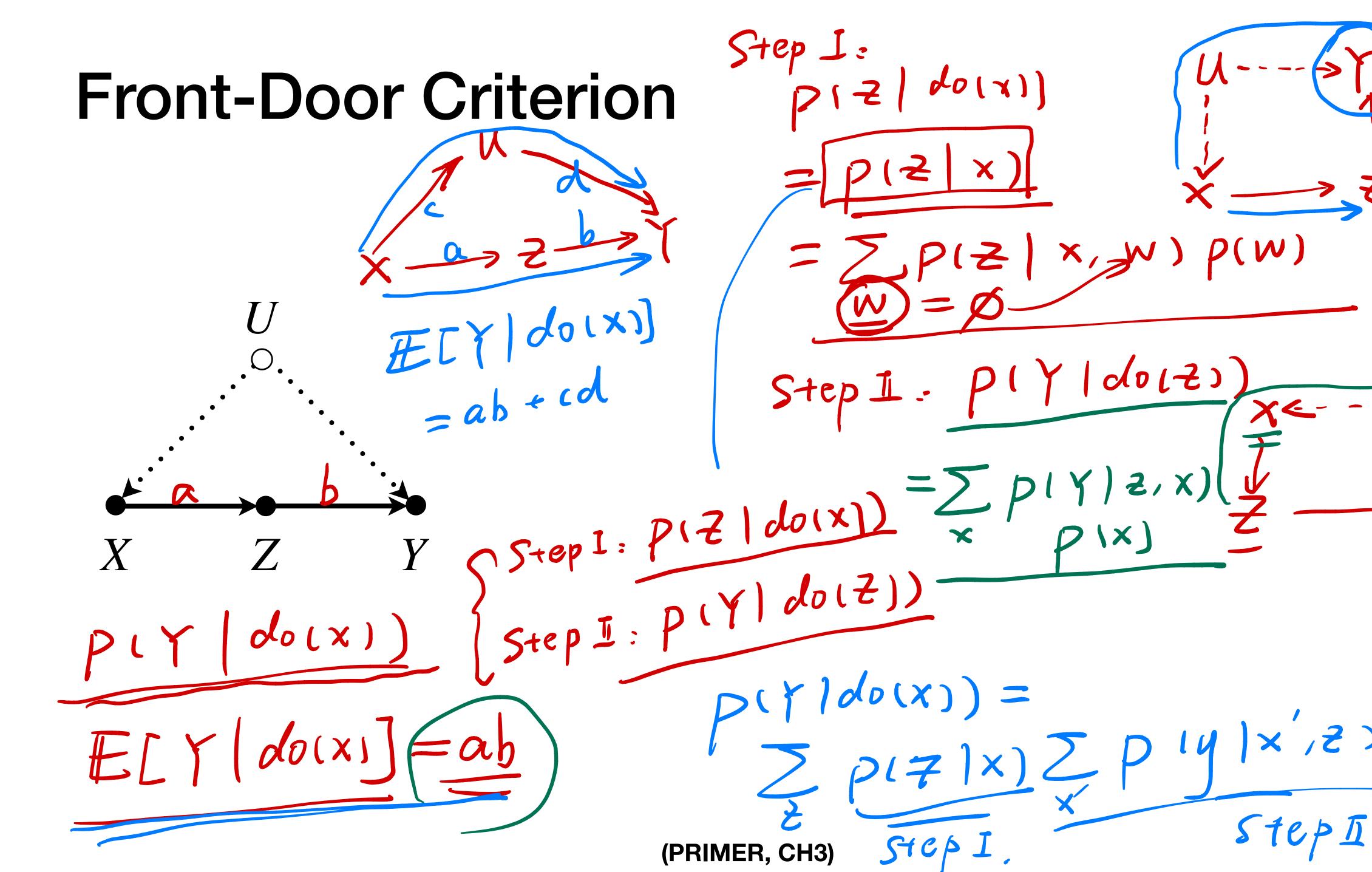
If Z blocks every path between two nodes X and Y, then X and Y are d-separated, conditional on Z, and thus are independent conditional on Z.

Back-Door Criterion

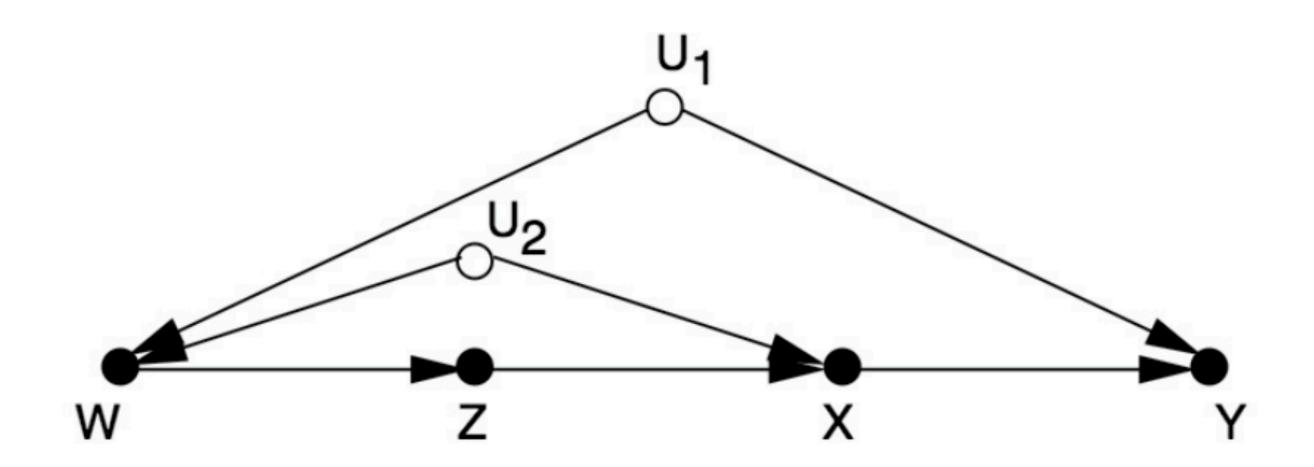
Sure Thing

Definition 3.3.1 (The Backdoor Criterion) Given an ordered pair of variables (X, Y) in a directed acyclic graph G, a set of variables Z satisfies the backdoor criterion relative to (X, Y) if no node in Z is a descendant of X, and Z blocks every path between X and Y that contains an arrow into X.





Front-Door or Back-Door?



$$P(Y | do(X))$$
?

do-Calculus

Rule 1 (Insertion/deletion of observations):

$$P(y \mid \hat{x}, z, w) = P(y \mid \hat{x}, w) \quad if (Y \perp \!\!\!\perp Z) \mid X, W)_{G_{\overline{X}}}.$$

Rule 2 (Action/observation exchange):

$$P(y \mid \hat{x}, \hat{z}, w) = P(y \mid \hat{x}, z, w) \quad if (Y \perp \!\!\!\perp Z) \mid X, W)_{G_{XZ}}.$$

Rule 3 (Insertion/deletion of actions):

$$P(y | \hat{x}, \hat{z}, w) = P(y | \hat{x}, w) \text{ if } (Y \perp \!\!\!\perp Z | X, W)_{G_{\overline{X}, \overline{Z(W)}}},$$

where Z(W) is the set of Z-nodes that are not ancestors of any W-node in $G_{\overline{X}}$.

Insertion/deletion of observations

Rule 1 (Insertion/deletion of observations):

$$P(y|\hat{x})z,w) = P(y|\hat{x})w) \quad if (Y \perp \!\!\!\perp Z) |X,W)_{G_{\overline{X}}}.$$

$$P(y|\hat{x})z,w) = P(y|\hat{x})w)$$

Action/observation exchange

$$\frac{1}{x} = clo(x)$$

$$P(y \mid \hat{x}, \hat{z}, w) = P(y \mid \hat{x}, z, w) \quad if (Y \perp \!\!\!\perp Z) \mid X, W)_{G_{\overline{X}\underline{Z}}}.$$

$$P(y|2) = P(y|2, w)$$

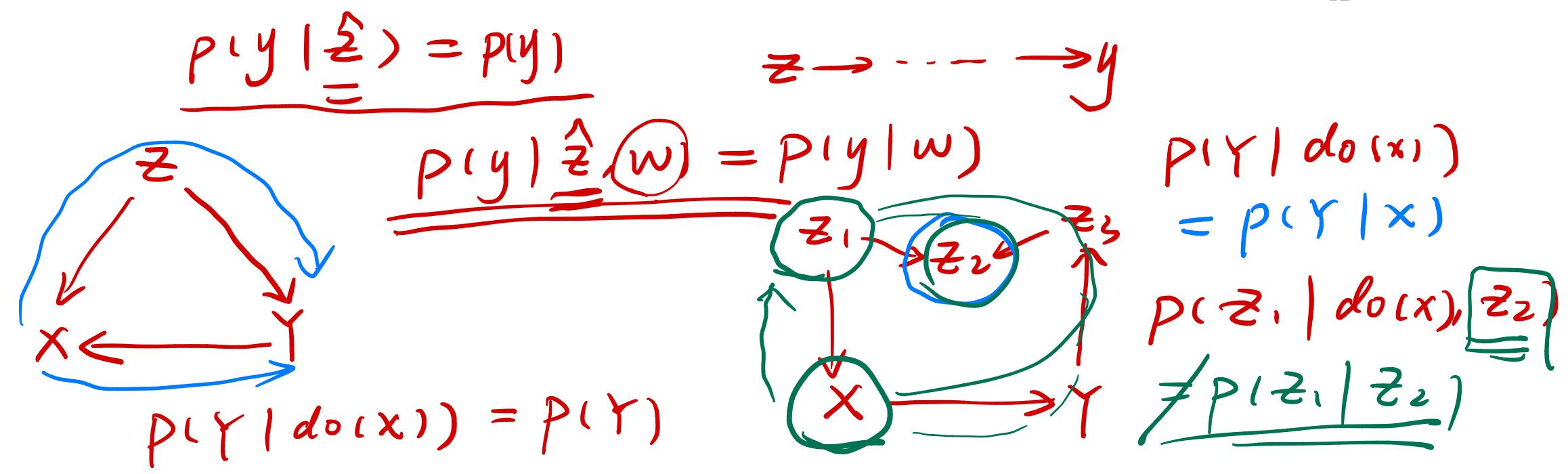
$$P(y|do(z)) = \sum_{w} P(y|z, w) P(w)$$

Insertion/deletion of actions

Rule 3 (Insertion/deletion of actions):

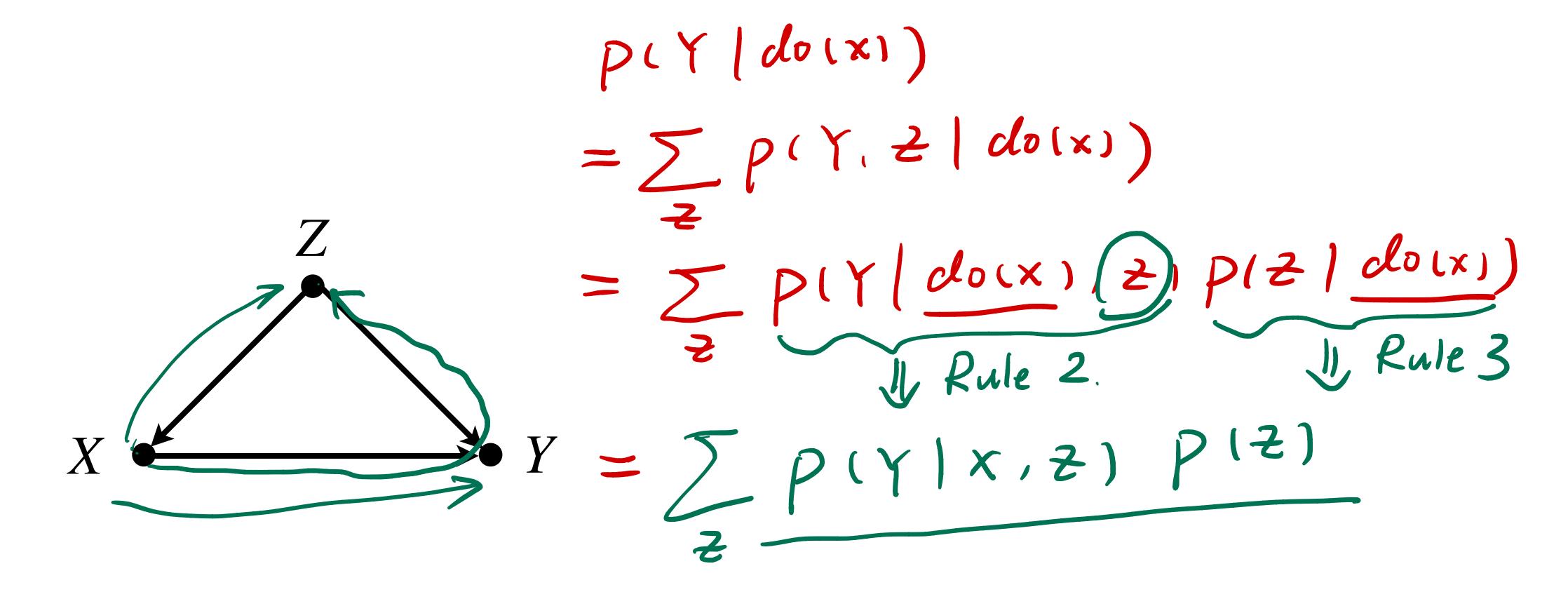
$$P(y | \hat{x}, \hat{z}, w) = P(y | \hat{x}, w) \text{ if } (Y \perp \!\!\!\perp Z | X, W)_{G_{\overline{X}, \overline{Z(W)}}},$$

where Z(W) is the set of Z-nodes that are not ancestors of any W-node in $G_{\overline{X}}$.

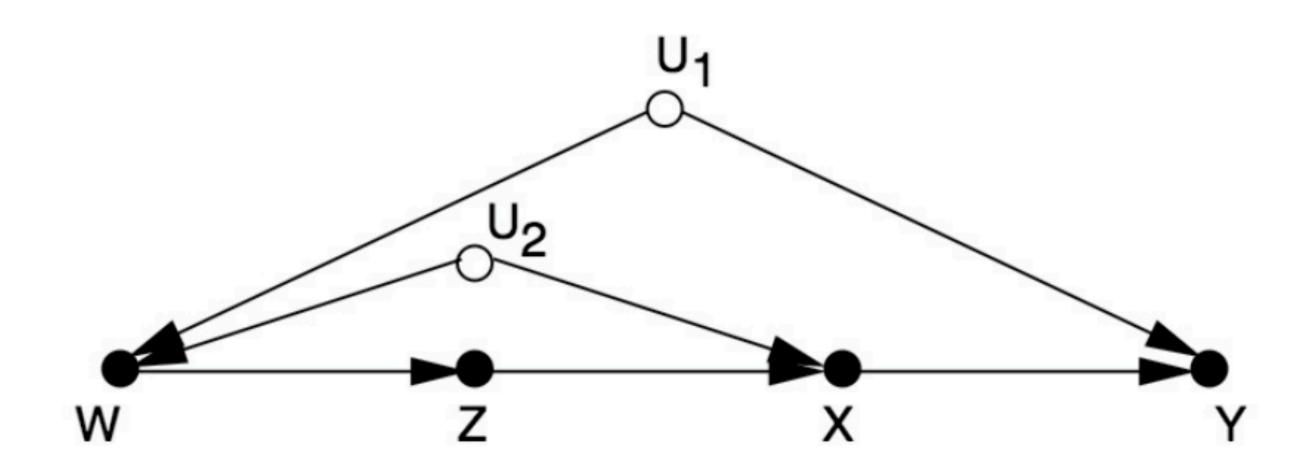


Chaochao Lu (WHY, CH7) Cambridge MLG

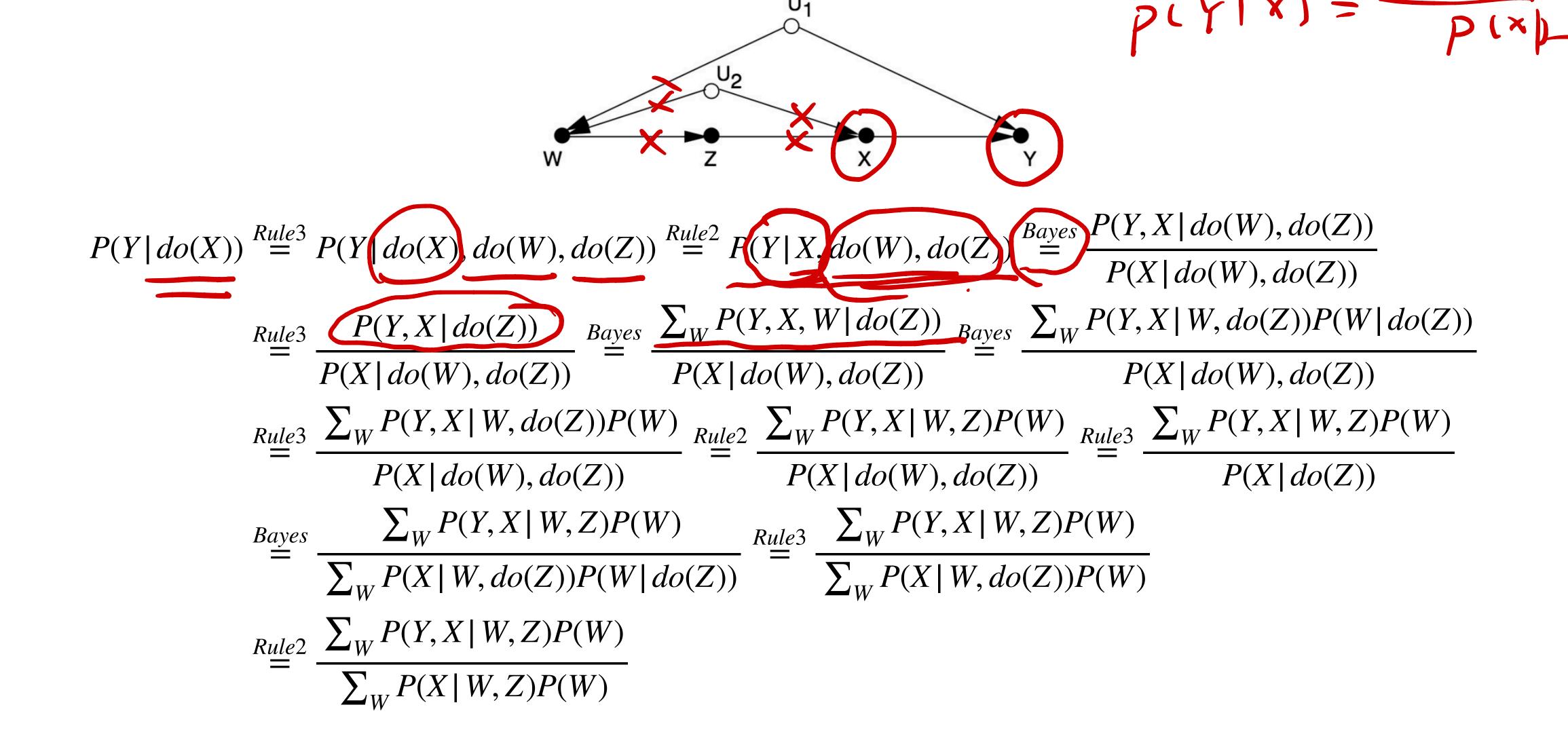
Revisit Back-Door Criterion



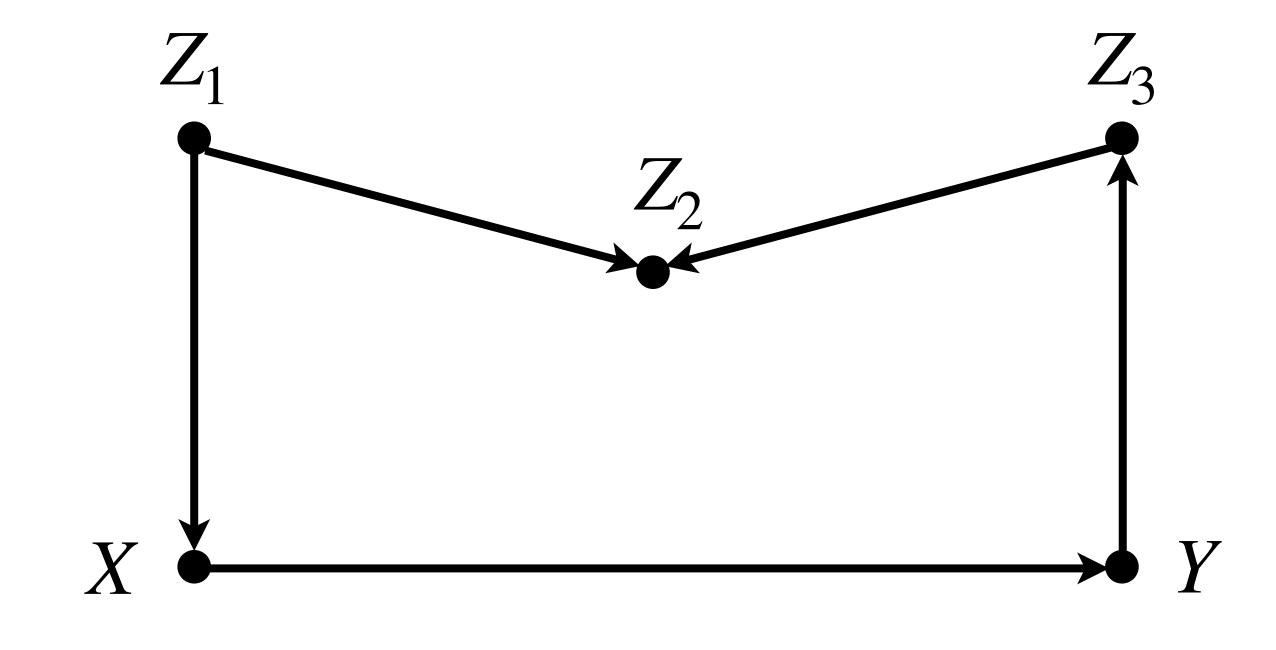
Let's do-Calculus!



Let's do-Calculus!



Let's do-Calculus?



$$P(Z_1 \mid do(X), Z_2)$$

Counterfactuals

These three steps can be generalized to any causal model M as follows. Given evidence e, to compute the probability of Y = y under the hypothetical condition X = x (where X is a subset of variables), apply the following three steps to M.

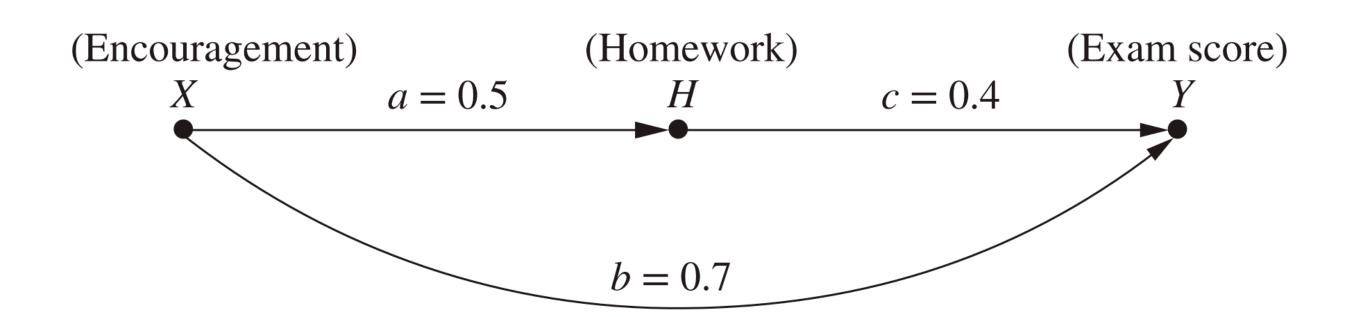
Step 1 (abduction): Update the probability P(u) to obtain $P(u \mid e)$.

Step 2 (action): Replace the equations corresponding to variables in set X by the equations X = x.

Step 3 (prediction): Use the modified model to compute the probability of Y = y.

(CAUSALITY, CH3)

A Toy Example

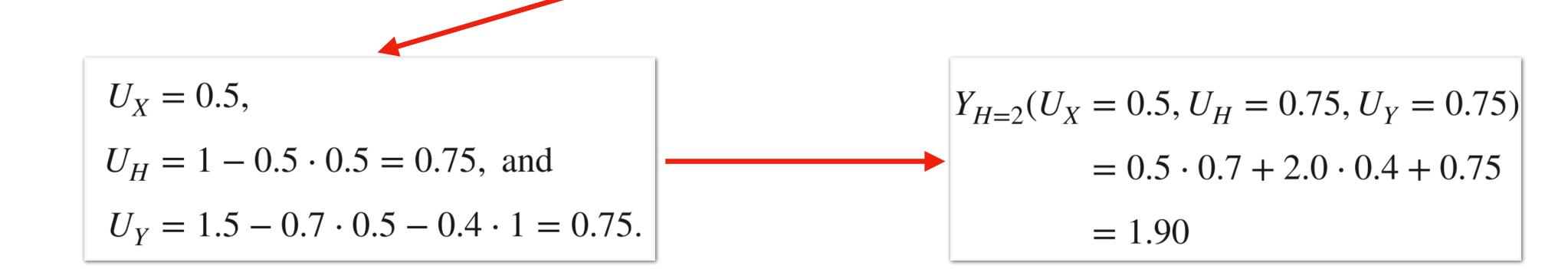


$$X = U_X$$

$$H = a \cdot X + U_H$$

$$Y = b \cdot X + c \cdot H + U_Y$$

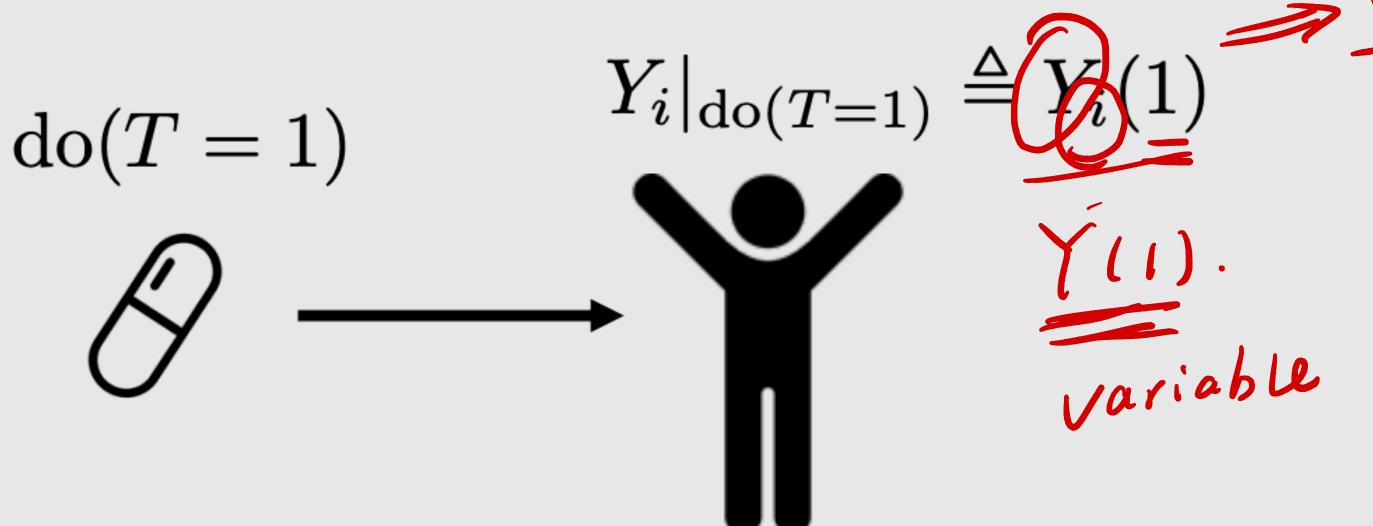
Let us consider a student named Joe, for whom we measure X = 0.5, H = 1, and Y = 1.5. Suppose we wish to answer the following query: What would Joe's score have been had he doubled his study time?



(PRIMER, CH4)

Potential Outcome Models

Potential Outcomes: Notations



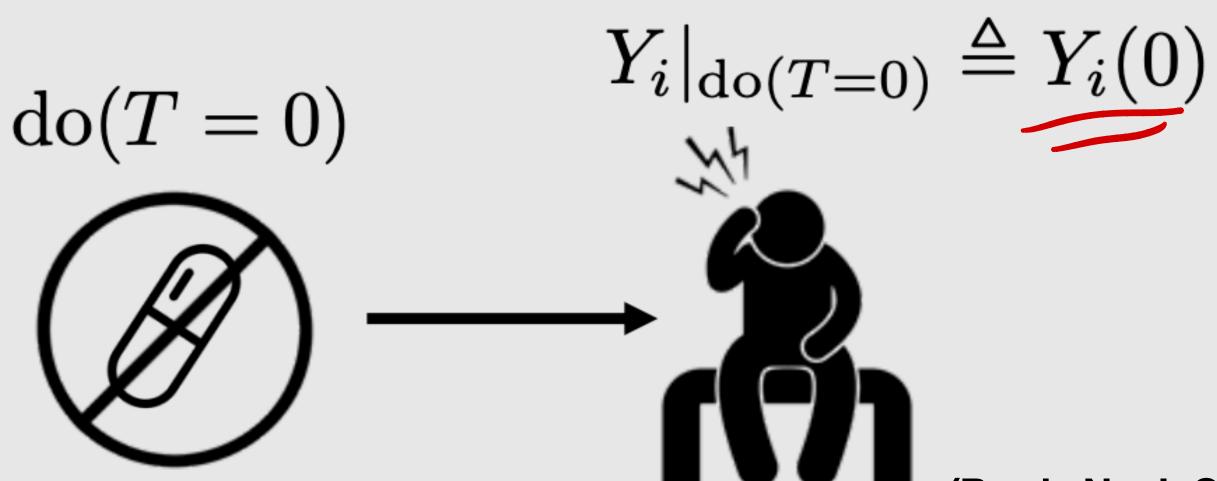
T: observed treatment Y: observed outcome

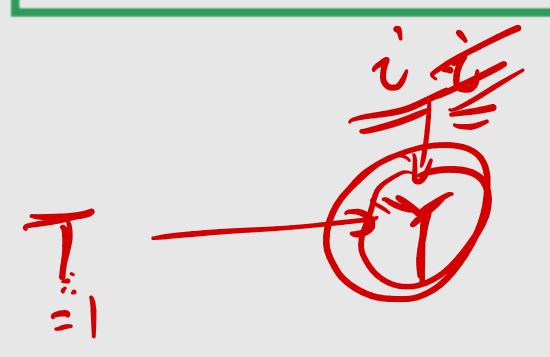
i : used in subscript to denote a

specific unit/individual

 $Y_i(1)$: potential outcome under treatment

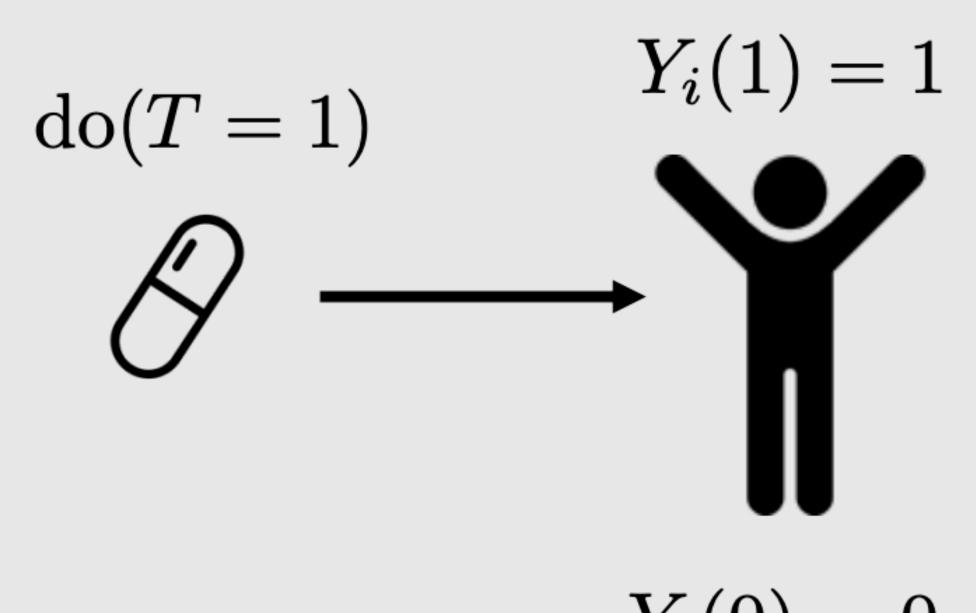
 $Y_i(0)$: potential outcome under no treatment





Potential Outcomes: Notations

(Brady Neal, CH2)



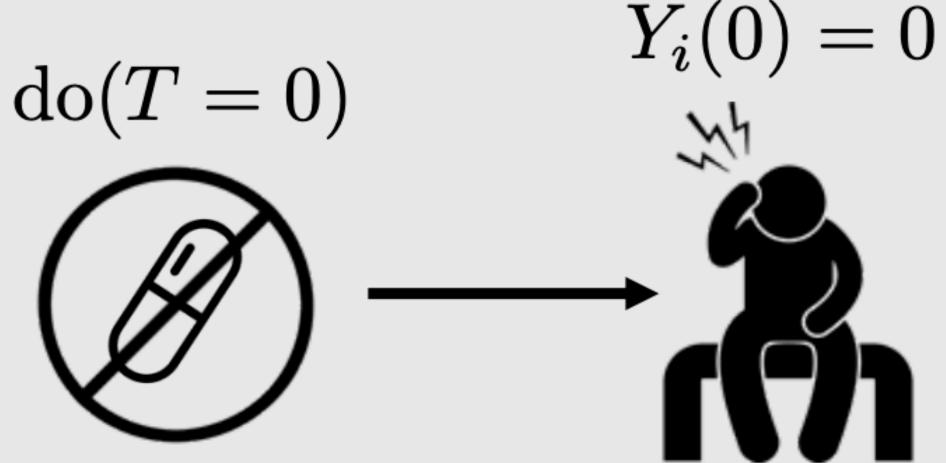
T: observed treatment Y: observed outcome

i : used in subscript to denote a

specific unit/individual

 $Y_i(1)$: potential outcome under treatment

 $Y_i(0)$: potential outcome under no treatment



Causal effect
$$Y_i(1) - Y_i(0) = 1$$

Fundamental Problem

i	T	Y	Y(1)	Y(0)	Y(1) - Y(0)
$\frac{1}{2}$	0	0	?	0	?
2	1	1	1	?	?
3	1	0	0	?	?
4	0	0	?	0	?
5	0	1	?	1	?
6	1	1	1	?	?

T: observed treatment

: observed outcome

i : used in subscript to denote a

specific unit/individual

 $Y_i(1)$: potential outcome under treatment

 $Y_i(0)$: potential outcome under no treatment

Average Treatment Effect (ATE)

i	T	Y	Y(1)	Y(0)	Y(1) - Y(0)
1	0	0	(?)	0	?
2	1	1	1	?	?
3	1	0	0	?	?
4	0	0		0	?
5	0	1	?/	1	?
6	1	1	1	?	?

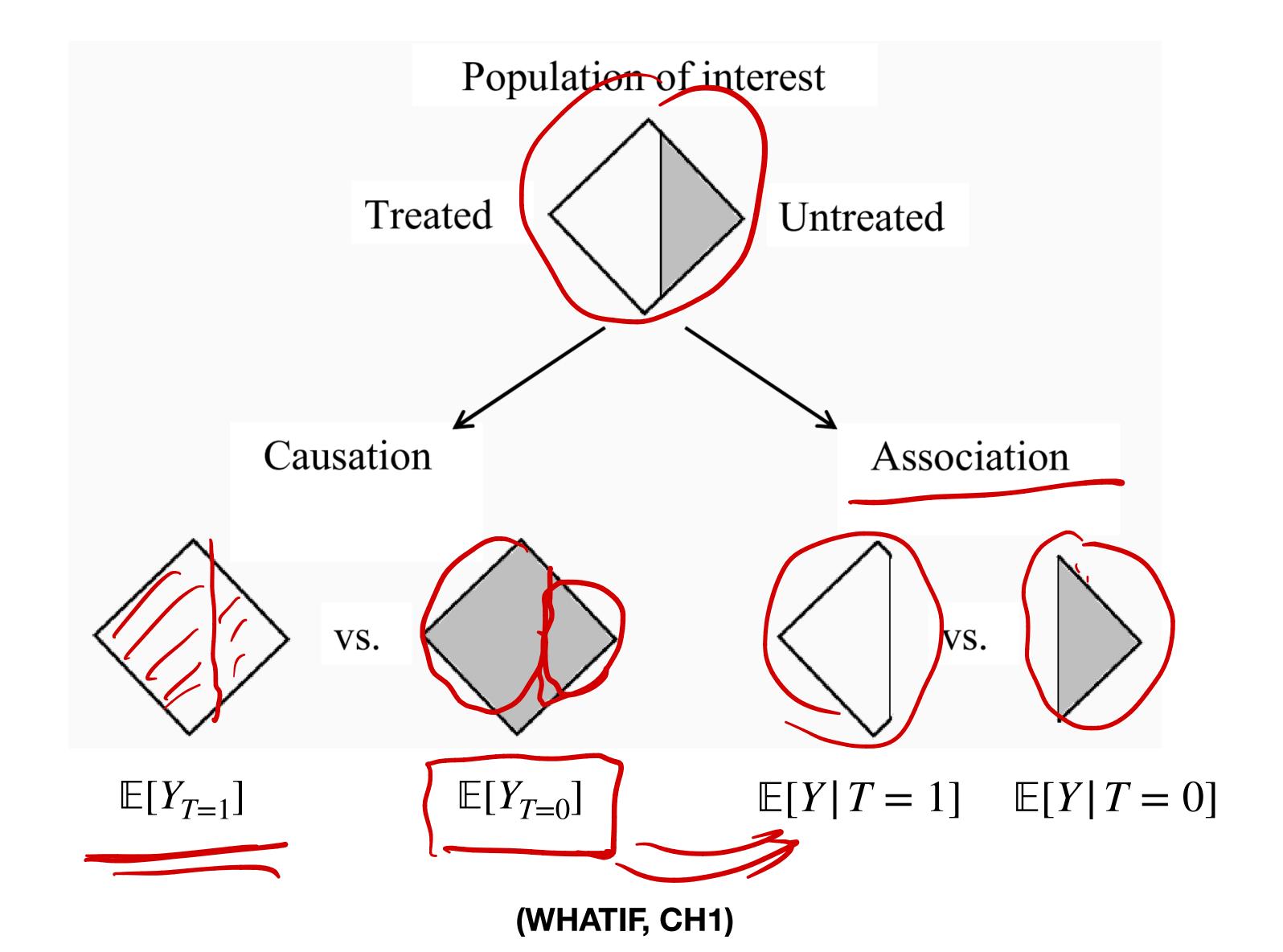
$$\mathbb{E}[Y(1) - Y(0)] = \mathbb{E}[Y(1)] - \mathbb{E}[Y(0)]$$
?

Average Treatment Effect (ATE)

i T	'Y	Y(1)	Y(0)	Y(1) - Y(0)
1 (0	0	?	0	?
2 $\boxed{1}$) 1	1	?	?
3 (1) 0	0	?	?
$4 \boxed{0}$	7 0	?		?
$5 \bigcirc$	1	?	1	?
6 1	1	1	?	?

$$\mathbb{E}[Y(1) - Y(0)] = \mathbb{E}[Y(1)] - \mathbb{E}[Y(0)] \stackrel{2}{\rightleftharpoons} \mathbb{E}[Y|T = 1] - \mathbb{E}[Y|T = 0]$$

Causation versus Association

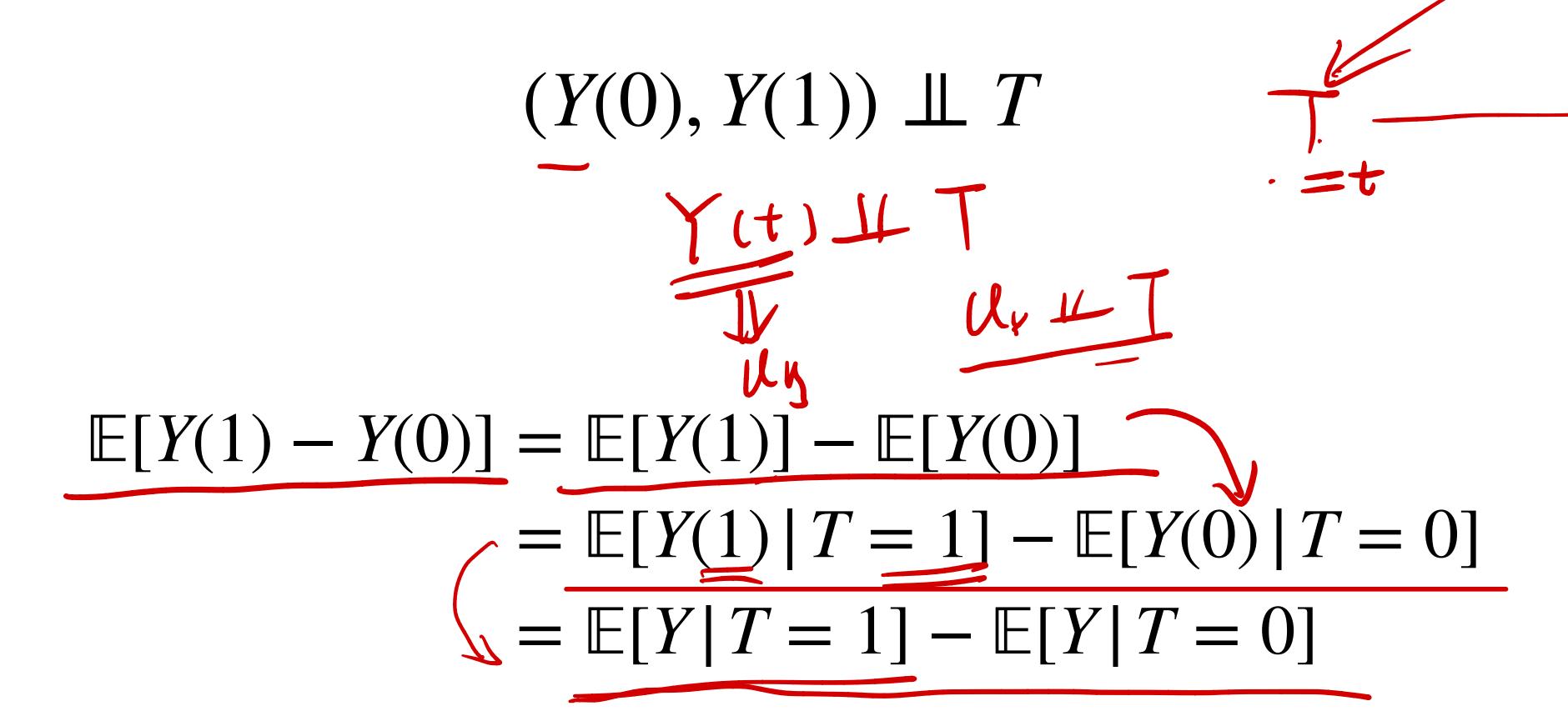


Consistency Rule

\overline{i}	T	Y	Y(1)	Y(0)	Y(1) - Y(0)
1	0	0	?	0	?
2	1	1	1	?	?
3	1	0	0	?	?
4	0	0	?	0	?
5	0	1	?	1	?
6	1	1	1	?	?

$$P(Y(t)|T=t)=P(Y|T=t)$$

Ignorability/Exchangeability



Conditional Ignorability/Exchangeability

$$(Y(0), Y(1)) \perp T(L)$$

$$\begin{split} \mathbb{E}[Y(1) - Y(0)] &= \mathbb{E}_L \mathbb{E}[Y(1) - Y(0) | L] \\ &= \mathbb{E}_L[\mathbb{E}[Y(1) | L] - \mathbb{E}[Y(0) | L]] \\ &= \mathbb{E}_L[\mathbb{E}[Y(1) | T = 1, L] - \mathbb{E}[Y(0) | T = 0, L]] \\ &= \mathbb{E}_L[\mathbb{E}[Y | T = 1, L] - \mathbb{E}[Y | T = 0, L]] \end{split}$$

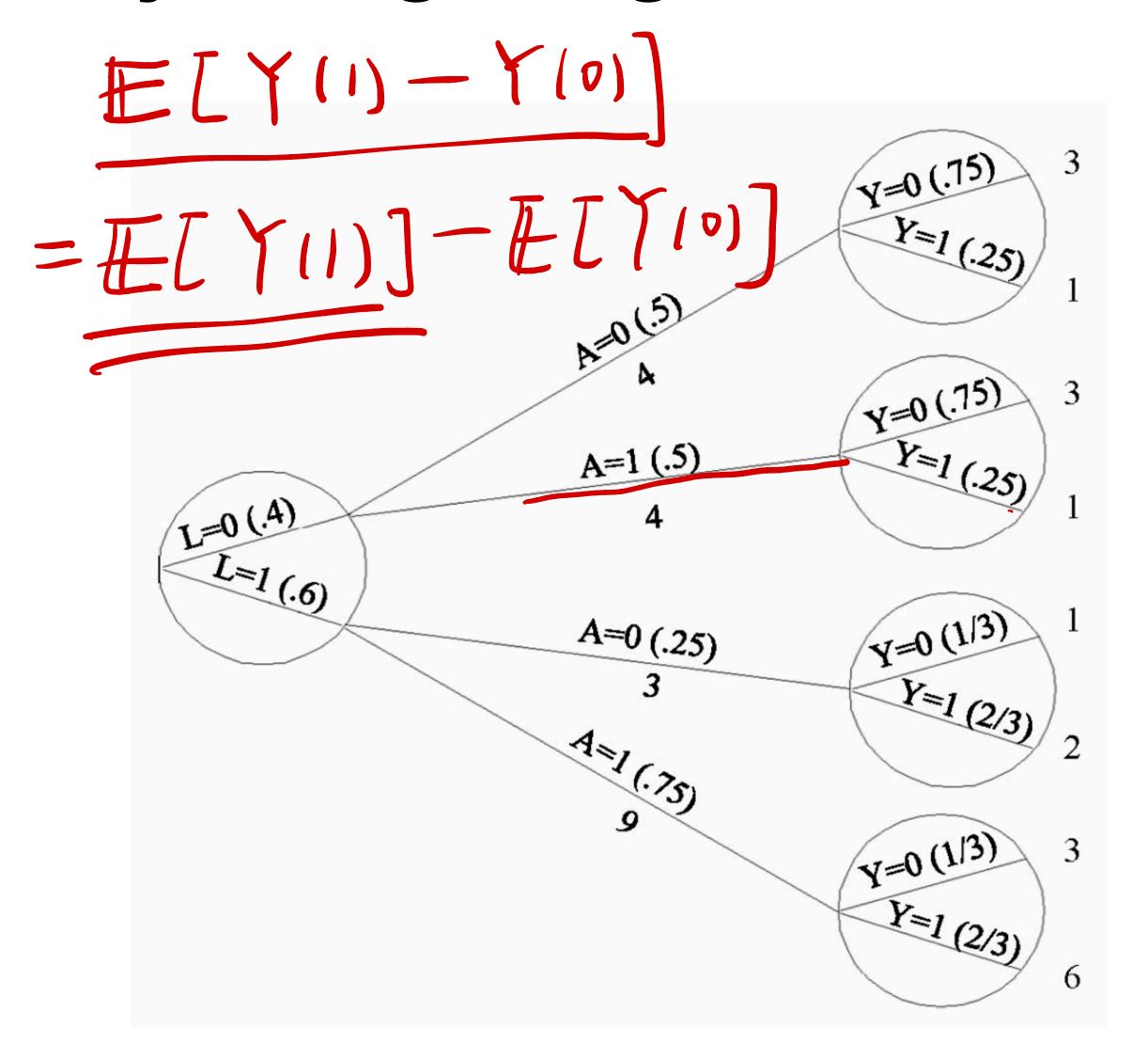
Standardization = back-door

	L	A	Y
Rheia	O	0	0
Kronos	0	0	1
Demeter	0	0	0
Hades	0	0	0
Hestia	0	1	0
Poseidon	0	1	0
Hera	0	1	0
Zeus	0	1	1
Artemis	1	0	1
Apollo	1	0	1
Leto	1	0	0
Ares	1	1	1
Athena	1	1	1
Hephaestus	1	1	1
Aphrodite	1	1	1
Cyclope	1	1	1
Persephone	1	1	1
Hermes	1	1	0
Hebe	1	1	0
Dionysus	1	1	0

$$\frac{LAY}{\text{Rheia}} = \frac{LAY}{0000}$$
Kronos 0 0 1

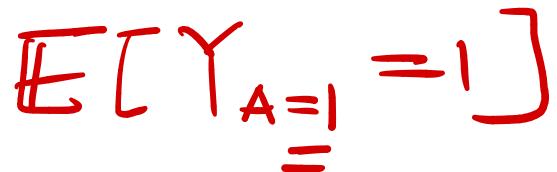
Inverse Probability Weighting

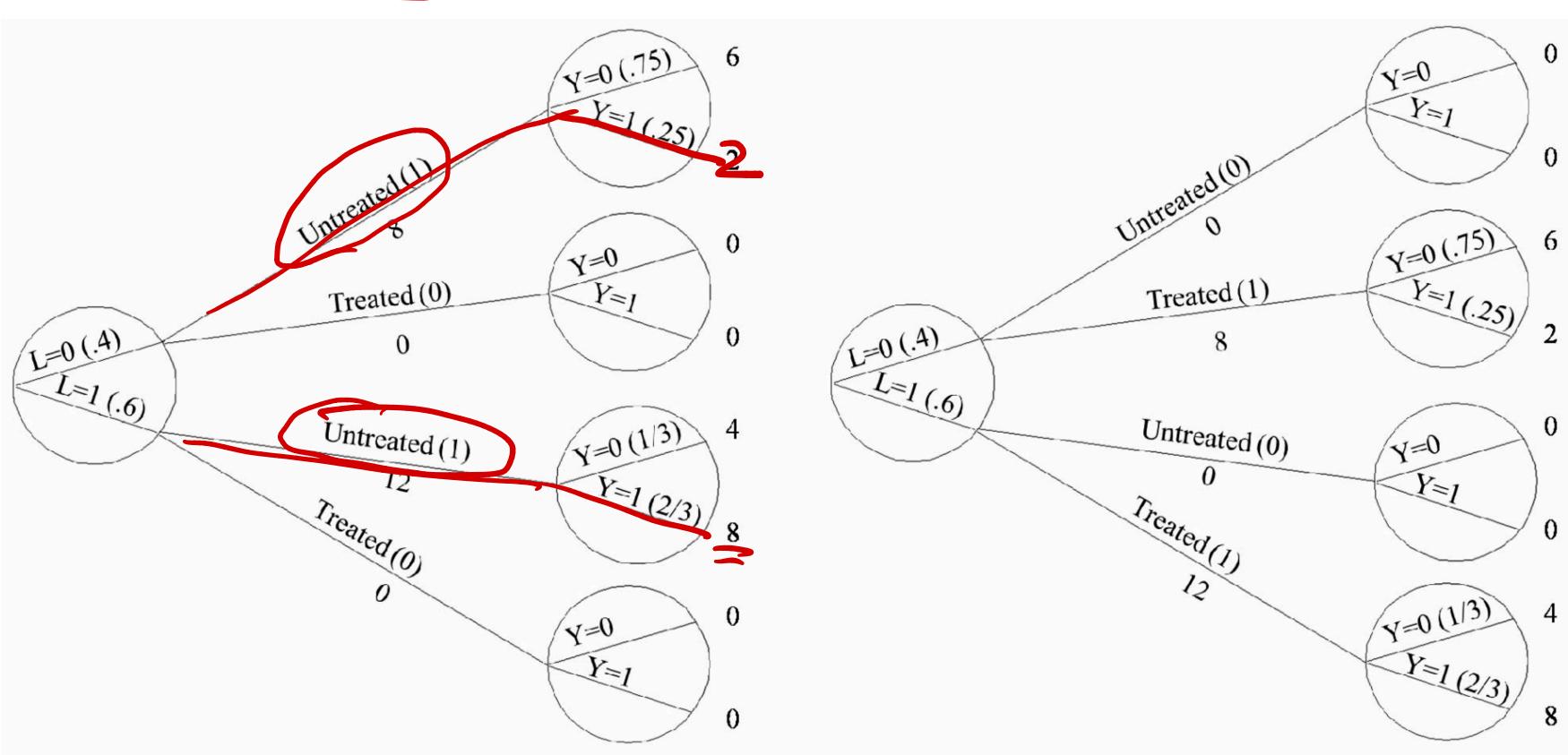
	L	\overline{A}	Y
Rheia	0	0	0
Kronos	0	0	1
Demeter	0	0	0
Hades	0	0	0
Hestia	0	1	0
Poseidon	0	1	0
Hera	0	1	0
Zeus	0	1	1
Artemis	1	0	1
Apollo	1	0	1
Leto	1	0	0
Ares	1	1	1
Athena	1	1	1
Hephaestus	1	1	1
Aphrodite	1	1	1
Cyclope	1	1	1
Persephone	1	1	1
Hermes	1	1	0
Hebe	1	1	0
Dionysus	1	1	0

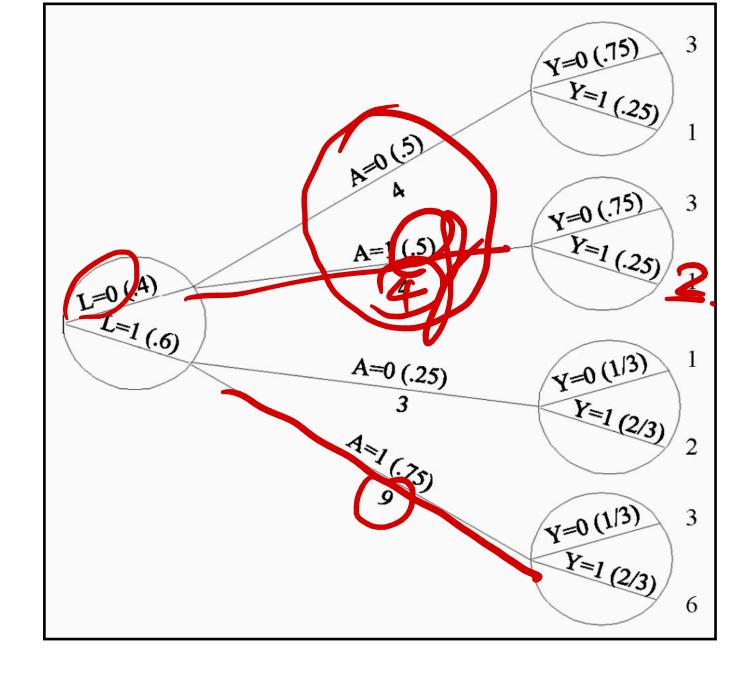


(WHATIF, CH2)

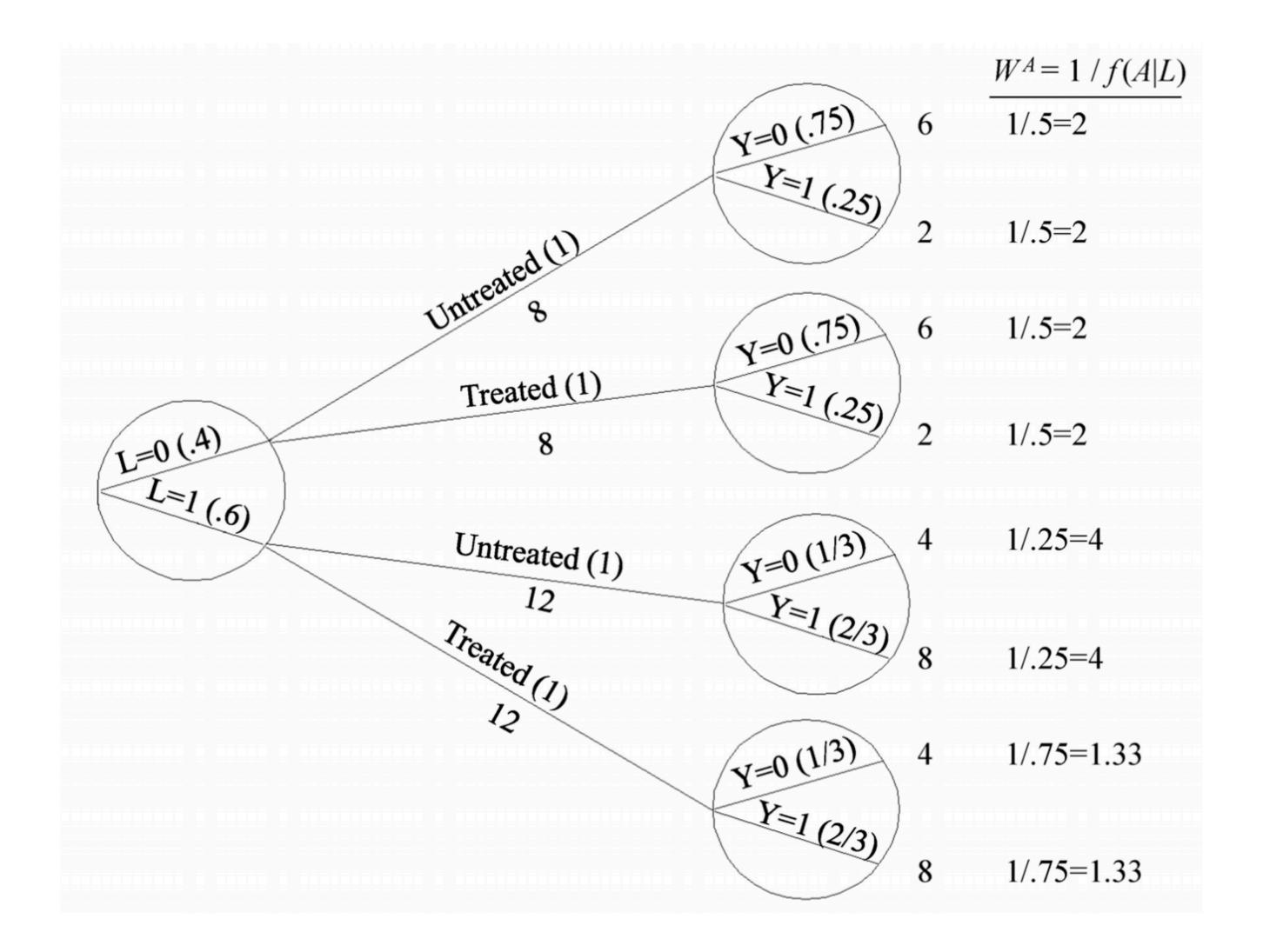
Inverse Probability Weighting

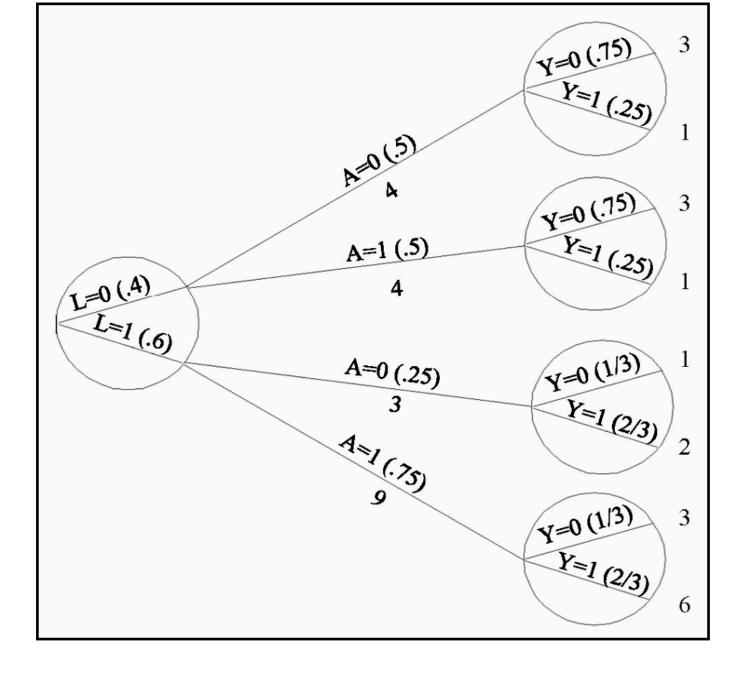




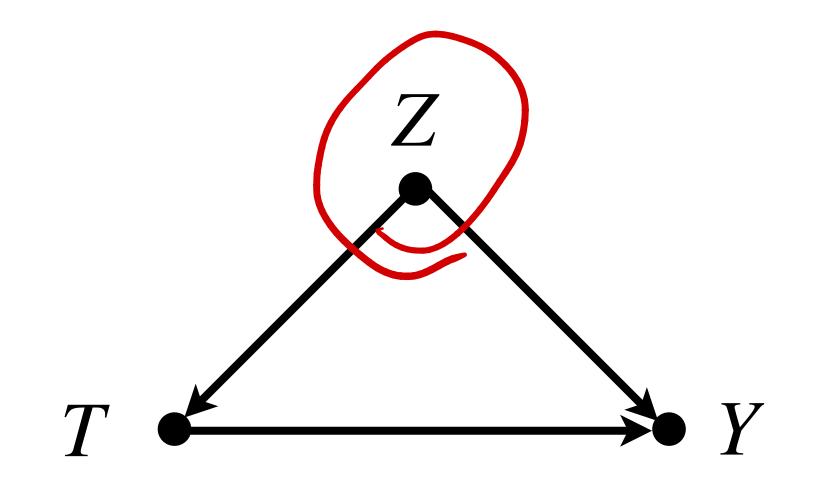


Inverse Probability Weighting





Propensity Score Theorem

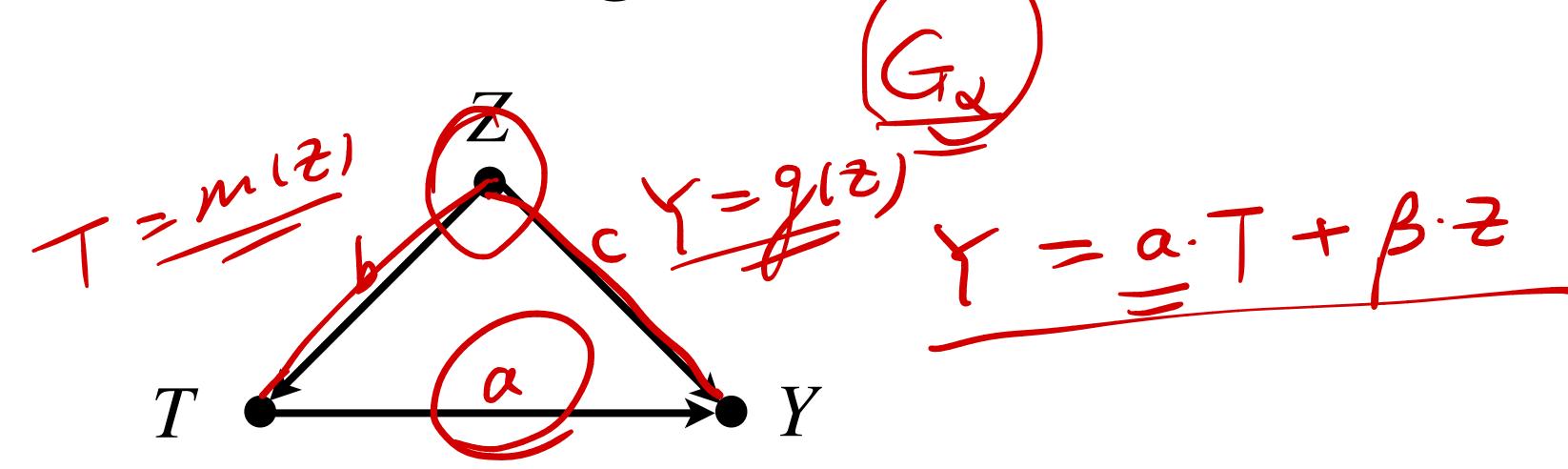


$$Y(t) \perp \!\!\! \perp T(Z) \Longrightarrow Y(t) \perp \!\!\! \perp T(e(Z)) = 1$$

$$(e(Z) \triangleq P(T = 1 | Z)$$

$$T \perp \!\!\! \perp Z \mid e(Z)$$

Double Machine Learning



Stage 1:

- Fit a model to predict Y from Z to get the predicted \hat{Y}
- Fit a model to predict T from Z to get the predicted \hat{T}

Stage 2:

• Partial out Z by fitting a model to predict $Y - \hat{Y}$ from $T - \hat{T}$

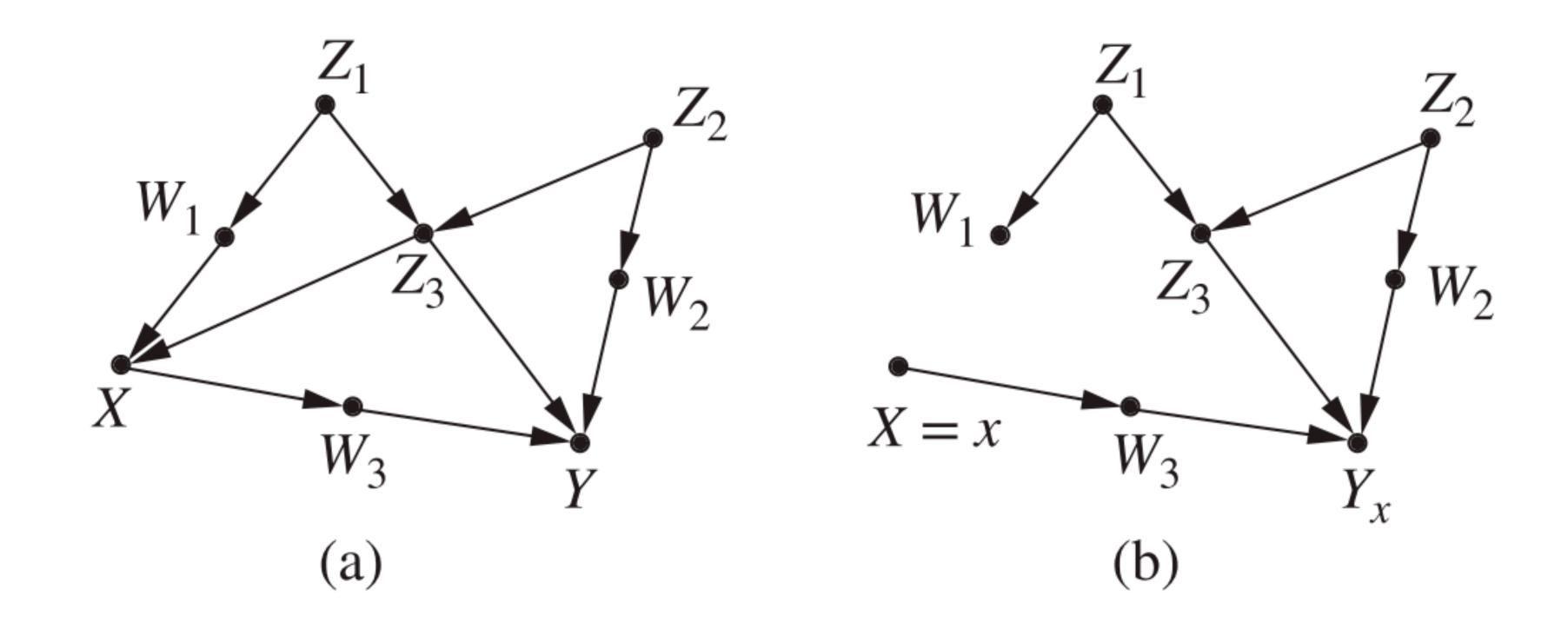
(Chernozhukov et al. 2018)

The Great Power of Graphs

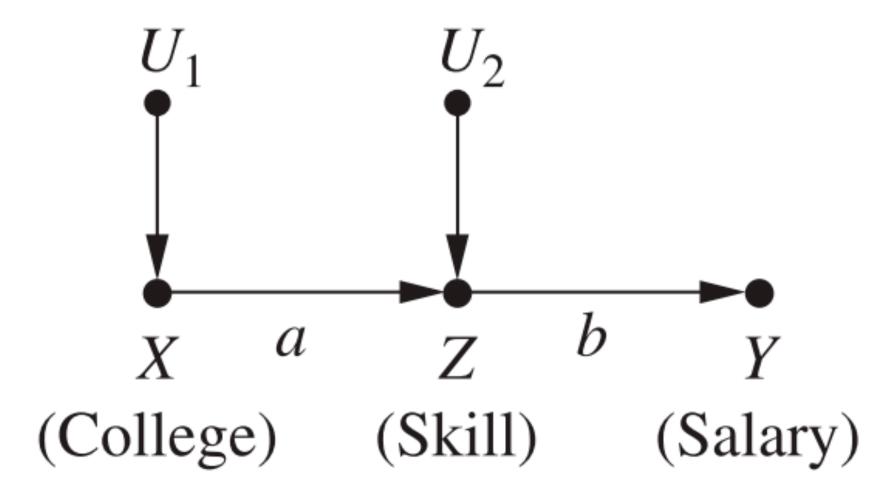
"Logic void of representation is metaphysics."

-Judea Pearl

Visualizing Counterfactuals



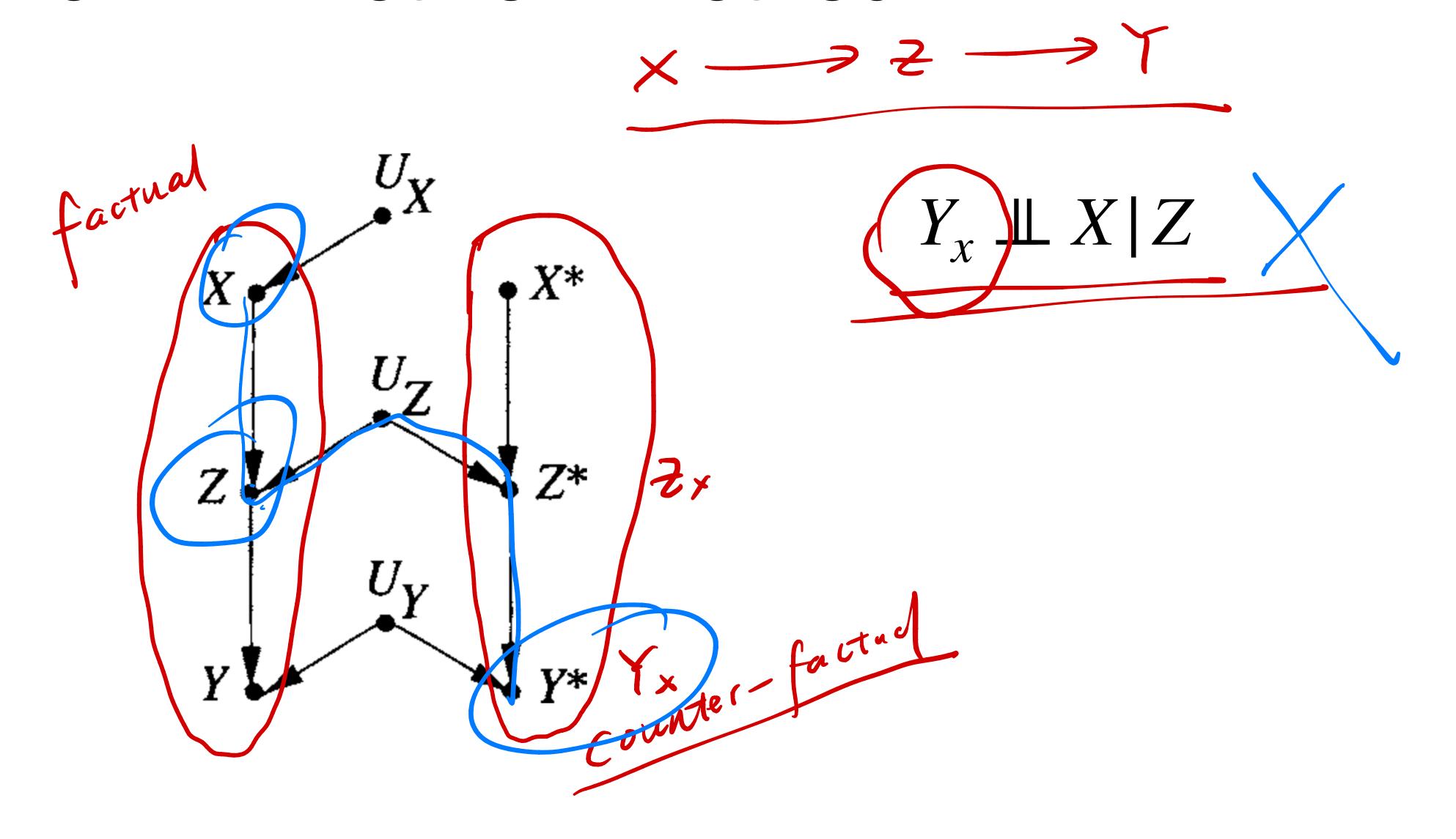
Example



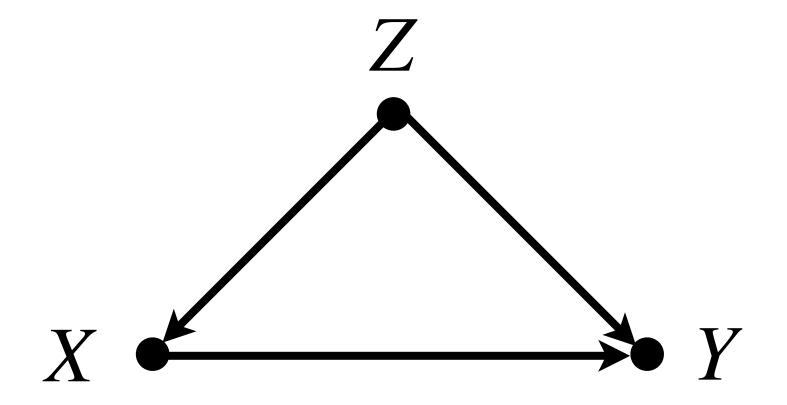
$$\mathbb{E}[Y_{X=1} | Z=1]$$

(PRIMER, CH4)

The Twin Network Method



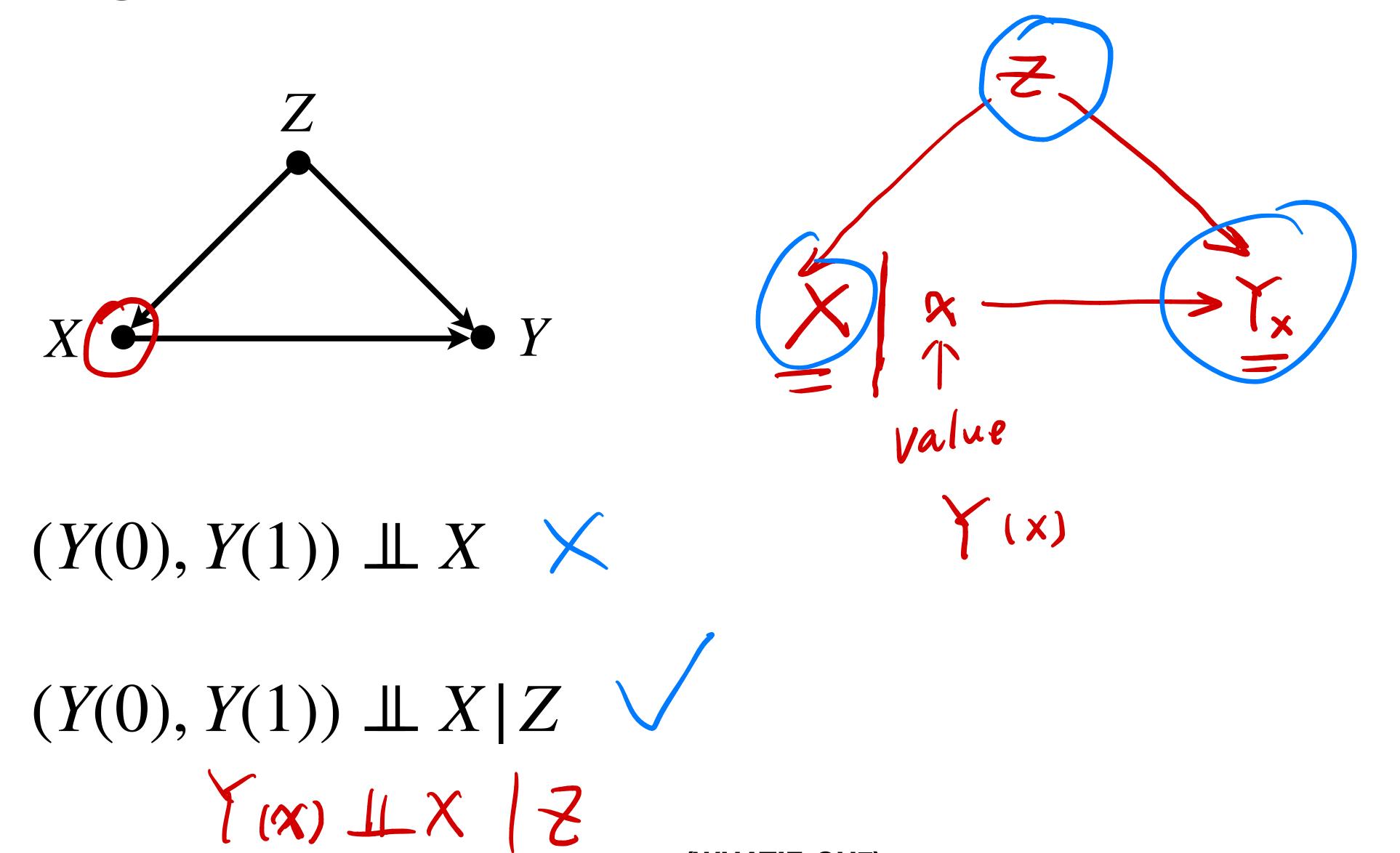
Example



$$(Y(0), Y(1)) \perp \!\!\! \perp X$$

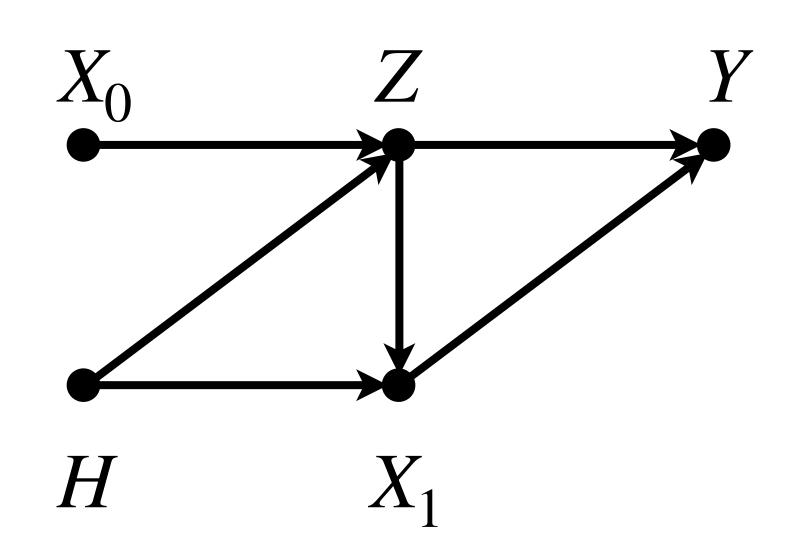
$$(Y(0), Y(1)) \perp\!\!\!\perp X \mid Z$$

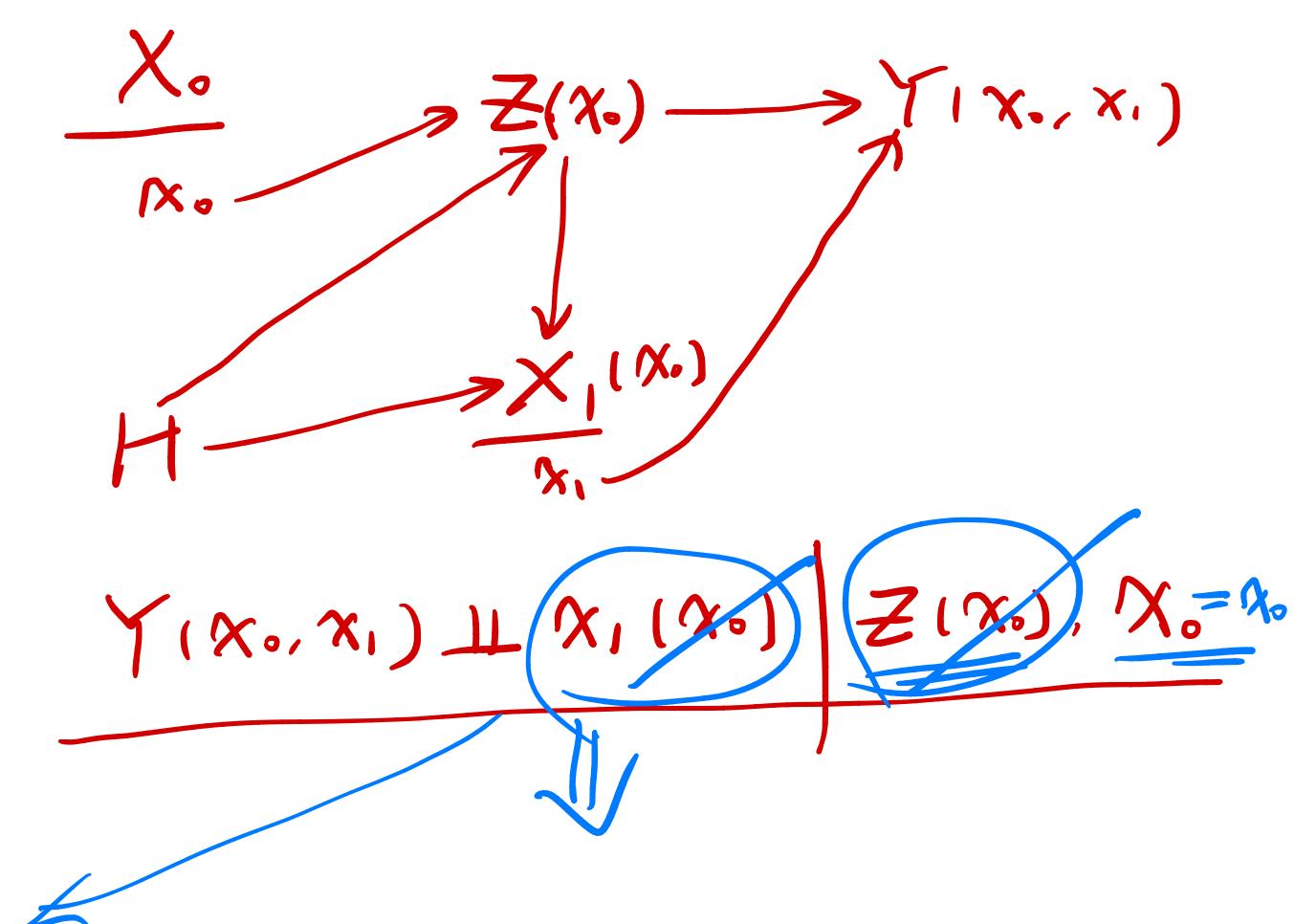
Single-World Intervention Graph (SWIG)



(WHATIF, CH7)

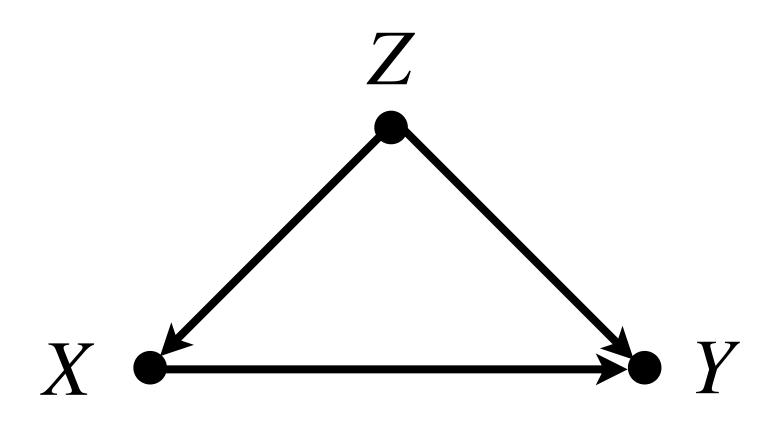
Example Using SWIG





$$Y(x_0, x_1) \perp X_1 = x_0$$

Counterfactual Interpretation of Backdoor



Theorem 4.3.1 (Counterfactual Interpretation of Backdoor) If a set Z of variables satisfies the backdoor condition relative to (X, Y), then, for all x, the counterfactual Y_x is conditionally independent of X given Z

$$P(Y_x|X,Z) = P(Y_x|Z) \tag{4.15}$$

Connections

How does POM work?

- "Mud does not cause rain."
- The probability of the counterfactual event "rain if it were not muddy" is the same as the probability of "rain if it were muddy".
- Causal judgements are expressed as constraints on probability functions involving counterfactual variables.

How does POM work?

- The potential-outcome analysis proceeds by imaging observed distribution $P(x_1, ..., x_n)$ as marginal distribution of an augmented probability function P^* defined over both observed and counterfactual variables.
- For example, P(y | do(x)) is phrased as $P * (Y_x = y)$.
- The potential-outcome approach views the variable Y under do(X) to be a different counterfactual variable Y_{χ} .
- The counterfactual variable Y_x can be connected to observed variable X and Y via consistency constraints: $X=x\Longrightarrow Y_x=Y$

From Graphs to Potential Outcomes

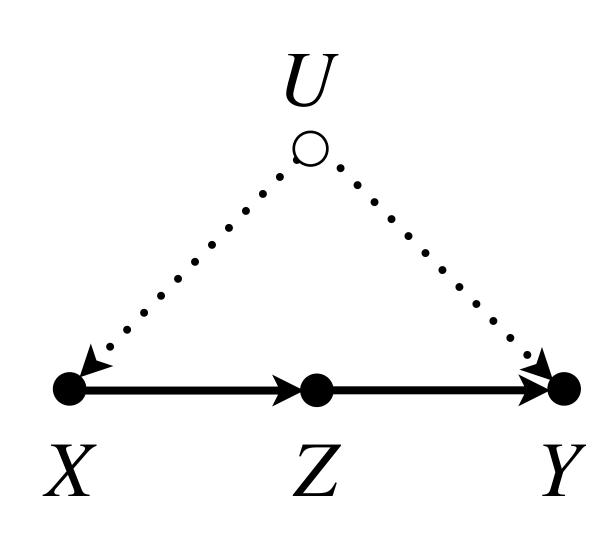
•Exclusion restrictions: For every variable Y having parents PA_Y and for every set of variables S disjoint of PA_Y , we have

$$Y = f(Pay, u)$$

$$Y_{pay}(u) = Y_{pay,s}(u)$$

•Independence restrictions: If $Z_1, ..., Z_k$ is any set of nodes not connected to Y via dashed arcs, we have

Example



$$Y_{pa_Y}(u) = Y_{pa_Y,S}(u)$$

$$Y_{pa_Y} \perp \{Z_{1_{pa_{Z_1}}}, ..., Z_{k_{pa_{Z_k}}}\}$$

Axiomatic Characterization

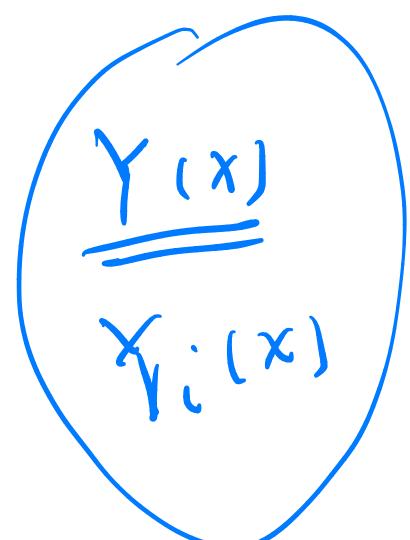
•Composition: For any three sets of endogenous variables $X,\ Y$, and W in a causal model, we have

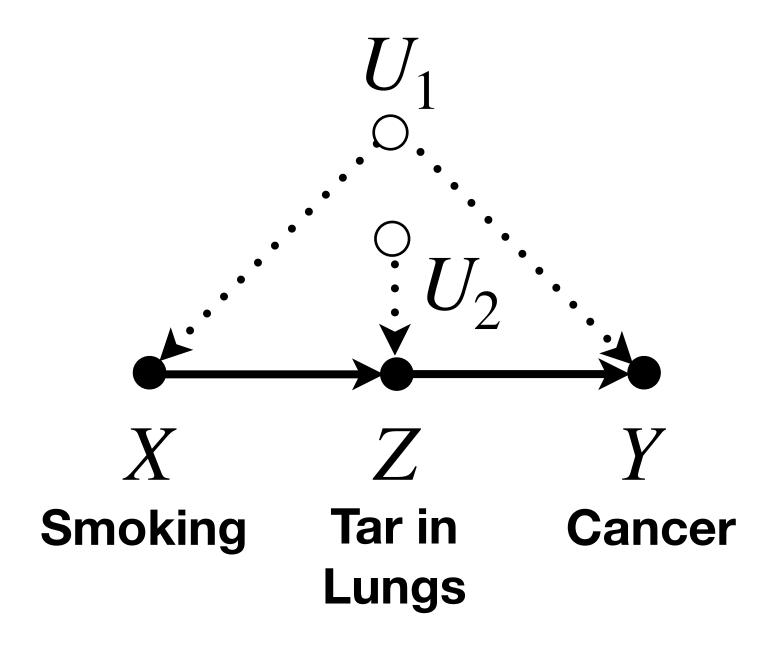
$$W_{\underline{x}}(u) = \underline{\underline{w}} \Longrightarrow Y_{\underline{w}}(u) = Y_{\underline{x}}(u)$$

$$\times \bullet \not = \emptyset$$

• Effectiveness: For all sets of variables, we have

$$X_{xw}(u) = \underline{x}$$





$$Z_{x}(u) = Z_{yx}(u),$$

$$X_{y}(u) = X_{zy}(u) = X_{z}(u) = X(u),$$

$$Y_{z}(u) = Y_{zx}(u),$$

$$Z_{x} \perp \!\!\!\perp \{Y_{z}, X\}.$$

Task 1

Compute $P(Z_x = z)$ (i.e., the causal effect of smoking on tar).

Composition:

$$W_{\chi}(u) = w \Longrightarrow Y_{\chi w}(u) = Y_{\chi}(u)$$
 .

Effectiveness:

$$X_{xw}(u) = x$$
.

$$Z_{x}(u) = Z_{yx}(u),$$

$$X_{y}(u) = X_{zy}(u) = X_{z}(u) = X(u),$$

$$Y_{z}(u) = Y_{zx}(u),$$

$$Z_{x} \perp \!\!\!\perp \{Y_{z}, X\}.$$

Task 2

Compute $P(Y_z = y)$ (i.e., the causal effect of tar on cancer).

Composition:

$$W_{\chi}(u) = w \Longrightarrow Y_{\chi w}(u) = Y_{\chi}(u)$$
 .

Effectiveness:

$$X_{xw}(u) = x$$
.

$$Z_{x}(u) = Z_{yx}(u),$$

$$X_{y}(u) = X_{zy}(u) = X_{z}(u) = X(u),$$

$$Y_{z}(u) = Y_{zx}(u),$$

$$Z_{x} \perp \!\!\!\perp \{Y_{z}, X\}.$$

Task 3

Compute $P(Y_x = y)$ (i.e., the causal effect of smoking on cancer).

Composition:

$$W_{\chi}(u) = w \Longrightarrow Y_{\chi w}(u) = Y_{\chi}(u)$$
 .

Effectiveness:

$$X_{xw}(u) = x$$
.

POM versus SCM

- $Y_x(u)$ stands for the outcome of experimental unit u under a **hypothetical** experimental condition X = x.
- In POM, $Y_x(u)$ is NOT derived from a causal model or from any formal representation of scientific knowledge, but is taken as a primitive.
- $Y_{\chi}(u)$ is connected to the reality only via the consistency rule.
- Consequently, POM does NOT provide a mathematical model, without the guarantee on completeness.

POM versus SCM

- The formal equivalence between POM and SCM covers issues of semantics and expressiveness but does NOT imply equivalence in conceptualisation or practical usefulness.
- SCMs and their associated graphs are particularly useful as means of expressing assumptions about cause-effect relationships.
- The major weakness of POM lies in the requirement that assumptions be articulated as conditional independence relationships involving counterfactual variables.
- The most compelling reason for molding causal assumption in the language of graphs is that such assumptions are needed before the data are gathered.

